Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 12 | 9 | 909-917
Tytuł artykułu

Temperature effect over structure and photochemical properties of nanostructured SnO2 powders

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We successfully synthesized tin dioxide nanoparticles with polyhedral morphology via an ethylene glycol assisted sol-gel approach. The structural characteristics of three tin dioxide samples were investigated after being thermally treated at 400°C, 600°C and 800°C. X-ray diffraction (XRD) patterns clearly show the formation of single phase tin dioxide nanoparticles, with crystallite size of 6–20 nm, in good correlation with Fourier transform infrared (FTIR) spectra. Transmission electron microscopy (TEM) analysis confirms the formation of 6nm polyhedral nanoparticles for the 400°C sample. Ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectra suggest a high concentration of oxygen vacancies. The oxygen vacancy concentration increases with temperature, due to the combined action of the formation of VO and the energetic O compensation. X-ray photoelectron spectroscopy (XPS) analysis also confirms the formation of single phase tin dioxide and the presence of oxygen vacancies in good agreement with UV-VIS and PL data.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Tom
12
Numer
9
Strony
909-917
Opis fizyczny
Daty
wydano
2014-09-01
online
2014-05-01
Twórcy
  • University Politehnica of Bucharest
autor
  • University Politehnica of Bucharest
  • University Politehnica of Bucharest
  • University Politehnica of Bucharest
autor
  • University Politehnica of Bucharest
Bibliografia
  • [1] M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005) http://dx.doi.org/10.1016/j.progsurf.2005.09.002[Crossref]
  • [2] S. Mohanty, S. Ravi, Solid State Commun. 150, 739 (2010) http://dx.doi.org/10.1016/j.ssc.2010.01.029[Crossref]
  • [3] H. Pirmoradi, J. Malakootikhah, M. Karimipour, A. Ahmadpour, N. Shahtahmasebi, F.E. Koshky, Middle-East J. Sci. Res. 8, 253 (2011)
  • [4] R. Parra, L.A. Ramajo, M.S. Goes, J.A. Varela, M.S. Castro, Mater. Res. Bull. 43, 3202 (2008) http://dx.doi.org/10.1016/j.materresbull.2008.03.001[Crossref]
  • [5] X.L. Wang, Z.X. Dai, Z. Zeng, J. Phys-Condens. Mat. 20, 045214 (2008). http://dx.doi.org/10.1088/0953-8984/20/04/045214[Crossref]
  • [6] G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, M. Pardo, A. Ponzoni, A. Vomiero, Thin Solid Films. 517, 6156 (2009) http://dx.doi.org/10.1016/j.tsf.2009.04.004[Crossref]
  • [7] J.H. Im, J.H. Lee, D.W. Park, Surf. Coat. Tech. 202, 5471, (2008) http://dx.doi.org/10.1016/j.surfcoat.2008.06.063[Crossref]
  • [8] Q.H. Wu, J. Song, J.C. Li, Surf. Interface Anal. 40, 1488 (2008) http://dx.doi.org/10.1002/sia.2944[Crossref]
  • [9] T.J. Stanimirova, P.A. Atanasov, I.G. Dimitrov, A.O. Dikovska, J. Optoelectron. Adv. M. 7, 1335 (2005)
  • [10] Z.W. Chen, J.K.L. Lai, C.H. Shek, H.D. Chen, J. Mater. Res. 18, 1289 (2003) http://dx.doi.org/10.1557/JMR.2003.0176[Crossref]
  • [11] M. Krishna, S. Komarneni, Ceram. Int. 35, 3375 (2009) http://dx.doi.org/10.1016/j.ceramint.2009.06.010[Crossref]
  • [12] K. Anandan, V. Rajendran, Journal of Non-Oxide Glasses. 2, 83 (2010)
  • [13] H.L. Zhu, D.R. Yang, G.X. Yu, H. Zhang, K.H. Yao, Nanotechnology. 17, 2386 (2006) http://dx.doi.org/10.1088/0957-4484/17/9/052[Crossref]
  • [14] S.M. Zhu, D. Zhang, J.J. Gu, J.Q. Xu, J.P. Dong, J.L. Li, J. Nanopart. Res. 12, 1389 (2010) http://dx.doi.org/10.1007/s11051-009-9684-0[Crossref]
  • [15] M. Ristic, M. Ivanda, S. Popovic, S. Music, J. Non-Cryst. Solids. 303, 270 (2002) http://dx.doi.org/10.1016/S0022-3093(02)00944-4[Crossref]
  • [16] R.N. Mariammal, N. Rajamanickam, K. Ramachandran, J. Nano-Electron. Phys. 3, 92 (2011)
  • [17] H. Taib, C.C. Sorrell, J.Aust. Ceram. Soc. 43, 56 (2007)
  • [18] F. Li, L.Y. Chen, Z.Q. Chen, J.Q. Xu, J.M. Zhu, X.Q. Xin, Mater. Chem. Phys. 73, 335 (2002) http://dx.doi.org/10.1016/S0254-0584(01)00357-1[Crossref]
  • [19] M.P. Singh, P.S. Chandi, R.C. Singh, J. Optoelectron. Adv. M. 9, 3275 (2007)
  • [20] J.R. Zhang, L. Gao, J. Solid State Chem. 177, 1425 (2004) http://dx.doi.org/10.1016/j.jssc.2003.11.024[Crossref]
  • [21] R.S. Niranjan, Y.K. Hwang, D.K. Kim, S.H. Jhung, J.S. Chang, I.S. Mulla, Mater. Chem. Phys. 92, 384 (2005) http://dx.doi.org/10.1016/j.matchemphys.2005.01.050[Crossref]
  • [22] S. Shukla, S. Patil, S.C. Kuiry, Z. Rahman, T. Du, L. Ludwig, C. Parish, S. Seal, Sensor Actuat B-Chem. 96, 343 (2003) http://dx.doi.org/10.1016/S0925-4005(03)00568-9[Crossref]
  • [23] S. Gnanam, V. Rajendran, Dig. J. Nanomater. Bios. 5, 699 (2010)
  • [24] S. Gnanam, V. Rajendran, J. Optoelectron. Adv. M. 12, 2199 (2010)
  • [25] C. Junin, M. Krissanasaeranee, A.M. Jamieson, S. Wongkasemjit, Chiang Mai J. Sci. 32, 385 (2005)
  • [26] G. Zhang, M. Liu, J. Mater. Sci. 34, 3213 (1999) http://dx.doi.org/10.1023/A:1004685907751[Crossref]
  • [27] A.R. Babar, S.S. Shinde, A.V. Moholkar, K.Y. Rajpure, J. Alloy. Compd. 505, 743 (2010) http://dx.doi.org/10.1016/j.jallcom.2010.06.131[Crossref]
  • [28] Z. Yang, et al., Electrochim. Acta. 55, 5485 (2010) http://dx.doi.org/10.1016/j.electacta.2010.04.045[Crossref]
  • [29] Y. Masuda, Prog. Cryst. Growth Ch. 58, 106 (2012) http://dx.doi.org/10.1016/j.pcrysgrow.2012.02.003[Crossref]
  • [30] J. Szuber, G. Czempik, R. Larciprete, D. Koziej, B. Adamowicz, Thin Solid Films 391, 198 (2001) http://dx.doi.org/10.1016/S0040-6090(01)00982-8[Crossref]
  • [31] D. Amalric-Popescu, F. Bozon-Verduraz, Catal. Today. 70, 139 (2001) http://dx.doi.org/10.1016/S0920-5861(01)00414-X[Crossref]
  • [32] O. Acarbas, E. Suvaci, A. Dogan, Ceram. Int. 33, 537 (2007) http://dx.doi.org/10.1016/j.ceramint.2005.10.024[Crossref]
  • [33] M. Epifani, M. Alvisi, L. Mirenghi, G. Leo, P. Siciliano, L. Vasanelli, J. Am. Ceram. Soc. 84, 48 (2001) http://dx.doi.org/10.1111/j.1151-2916.2001.tb00606.x[Crossref]
  • [34] J. Jouhannaud, J. Rossignol, D. Stuerga, J. Solid State Chem. 181, 1439 (2008) http://dx.doi.org/10.1016/j.jssc.2008.02.040[Crossref]
  • [35] O.R. Vasile, E. Andronescu, C. Ghitulica, B.S. Vasile, O. Oprea, E. Vasile, R. Trusca, J. Nanopart. Res. 14, 1269 (2012). http://dx.doi.org/10.1007/s11051-012-1269-7[Crossref]
  • [36] M. Aziz, S.S. Abbas, W.R.W. Baharom, Mater. Lett. 91, 31 (2013) http://dx.doi.org/10.1016/j.matlet.2012.09.079[Crossref]
  • [37] M.M. Bagheri-Mohagheghi, N. Shahtahmasebi, M.R. Alinejad, A. Yousseffi, M. Shokooh-Saremi, Physica B. 403, 2431 (2008) http://dx.doi.org/10.1016/j.physb.2008.01.004[Crossref]
  • [38] F. Davar, F. Mohandes, M. Salavati-Niasari, Polyhedron. 29, 3132 (2010) http://dx.doi.org/10.1016/j.poly.2010.08.022[Crossref]
  • [39] N. Talebian, F. Jafarinezhad, Ceram. Int. 39, 8311 (2013) http://dx.doi.org/10.1016/j.ceramint.2013.03.101[Crossref]
  • [40] H.H. Son, W.G. Lee, J. Ind. Eng. Chem. 18, 317 (2012) http://dx.doi.org/10.1016/j.jiec.2011.11.042[Crossref]
  • [41] A. Gaber, A.Y. Abdel-Latief, M.A. Abdel-Rahim, M.N. Abdel-Salam, Mat. Sci. Semicon. Proc. 16, 1784 (2013) http://dx.doi.org/10.1016/j.mssp.2013.06.026[Crossref]
  • [42] M.A. El Khakani, R. Dolbec, A.M. Serventi, M.C. Horrillo, M. Trudeau, R.G. Saint-Jacques, D.G. Rickerby, I. Sayago, Sensor. Actuat. B-Chem. 77, 383 (2001) http://dx.doi.org/10.1016/S0925-4005(01)00758-4[Crossref]
  • [43] O. Oprea, E. Andronescu, B.S. Vasile, G. Voicu, C. Covaliu, Dig. J. Nanomater. Bios. 6, 1393 (2011)
  • [44] W.F. Zhang, Z. Yin, M.S. Zhang, Z.L. Du, W.C. Chen, J. Phys-Condens. Mat. 11, 5655 (1999) http://dx.doi.org/10.1088/0953-8984/11/29/312[Crossref]
  • [45] W.F. Zhang, M.S. Zhang, Z. Yin, Q. Chen, Appl. Phys. B-Lasers O. 70, 261 (2000) http://dx.doi.org/10.1007/s003400050043[Crossref]
  • [46] W.F. Zhang, M.S. Zhang, Z. Yin, Phys. Status Solidi A. 179, 319 (2000) http://dx.doi.org/10.1002/1521-396X(200006)179:2<319::AID-PSSA319>3.0.CO;2-H[Crossref]
  • [47] D. Gingasu, O. Oprea, I. Mindru, D.C. Culita, L. Patron, Dig. J. Nanomater. Bios. 6, 1215 (2011)
  • [48] S. Das, S. Kar, S. Chaudhuri, J. Appl. Phys. 99, 114303 (2006). http://dx.doi.org/10.1063/1.2200449[Crossref]
  • [49] Y. Zhu, Y. Chen, X. Zhang, Eur. J. Chem. 2, 8 (2011) http://dx.doi.org/10.5155/eurjchem.2.1.8-13.134[Crossref]
  • [50] H.W. Seo, S.Y. Bae, J. Park, H.N. Yang, K.S. Park, S. Kim, J. Chem. Phys. 116, 9492 (2002) http://dx.doi.org/10.1063/1.1475748[Crossref]
  • [51] F. Gu, S.F. Wang, C.F. Song, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Chem. Phys. Lett. 372, 451 (2003) http://dx.doi.org/10.1016/S0009-2614(03)00440-8[Crossref]
  • [52] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996) http://dx.doi.org/10.1063/1.362349[Crossref]
  • [53] F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Opt. Mater. 25, 59 (2004) http://dx.doi.org/10.1016/S0925-3467(03)00226-X[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11532-013-0400-7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.