Nowa wersja platformy jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 11 | 5 | 664-671
Tytuł artykułu

Investigation of SOFC material properties for plant-level modeling

Treść / Zawartość
Warianty tytułu
Języki publikacji
This article describes results of a recent study of SOFC (Solid Oxide Fuel Cell) material properties using a numerical tool. The created model was validated against experimental data collected for two different solid oxide fuel cells. With focus on ionic and electronic conductivities, temperature influence was investigated. Results are presented, compared with available data, and discussed. Model of a micro-CHP (Combined Heat and Power) unit based on a SOFC stack was used for evaluation of system performance with different cells. On-site generated bio-syngas was considered as a fuel fed for the unit. The overall system efficiency was analyzed using an Aspen HYSYS modeling environment. Properties of two generic electrolyte materials were implemented in the models for evaluation of a co-generative unit operation. Electrical and overall efficiencies of systems based on those cells were compared and differences were observed. Micro-scale power units with fuel cells are a promising technology for highly efficient distributed cogeneration. As it was concluded, selection of a proper cell is crucial to assure high system efficiency. [...]
Słowa kluczowe

Opis fizyczny
  • Institute of Heat Engineering, Warsaw University of Technology, 00-665, Warsaw, Poland
  • Fuel Cell Department, Institute of Power Engineering, 02-981, Warsaw, Poland
  • [1] Directive 2004/8/EC of the European Parliament and of the Council of 11 February 2004 on the promotion of cogeneration based on a useful heat demand in the internal energy market (European Commission, Strasbourg, 2004)
  • [2] L. Barelli, G. Bidini, F. Gallorini, A. Ottaviano, Int. J. Hydrogen Energy36, 3206 (2011)
  • [3] J. Kupecki, J. Jewulski, K. Badyda, Rynek Energii 97, 157 (2011) (in Polish)
  • [4] E.I. Zolias, N. Lymberopoulos (Eds.), Autonomous Power Systems (Springer-Verlag, London, 2008)
  • [5] T. Tanaka, Y. Inui, A. Urata, T. Kanno, Energy Conversion and Management 48, 1491 (2007)[Crossref]
  • [6] M. Iwata, T. Hikosaka, M. Morita, T. Iwanari, K. Ito, K. Onda et al., Solid State Ionics 132, 297 (2000)[Crossref]
  • [7] K.J. Kattke, R.J. Braun, A.M. Colclasure, G. Goldin G, Journal of Power Sources 196, 3790 (2011)[Crossref]
  • [8] J. Milewski, A. Miller, J. Salacinski, Int. J. Hydrogen Energy 32, 687 (2007)[Crossref]
  • [9] Y. Jiang, A.V. Virkar, J. of Electrochemical Soc. Vol 148 (2001)
  • [10] US Department of Energy, National Energy Technology Laboratory, Fuel Cell Handbook, 7th edition (EG&G Technical Services Inc., Morgantown, 2004)
  • [11] J. Kupecki, Integrated Gasification SOFC Hybrid Power System Modeling: Novel numerical approach to modeling of advanced power systems, (VDM Verlag Dr. Muller, Saarbrucken, 2010)
  • [12] H. Yokokawa, Annual Review of Materials Research 33, 581 (2003)[Crossref]
  • [13] R. O’Hayre, S.W. Cha, W. Colella, F. Prinz, Fuel cell fundamentals (Wiley, New York, 2005)
  • [14] J. Milewski, J. Lewandowski, Archives of Thermodynamics 30, 4 (2009)
  • [15] J. Staniforth, R.M. Ormerod, Ionics 9(5–6), 336 (2003)[Crossref]
  • [16] A. Wojcik, H. Middleton, I, Damopoulos, J. Van Heerle, J. of Power Sources 118(1–2), 342 (2003)[Crossref]
  • [17] E.P. Murray, S.J. Harris, H. Jen, J. of Electrochemical Soc. 149(9), A1127 (2002)[Crossref]
  • [18] J. Kupecki, J. Jewulski, J. Milewski, In: C. Aydinalp (Ed.), Clean Energy for Better Environment (InTech, Rijeka, 2012) 53
  • [19] A. Virkar, J. Power Sources 147, 8 (2005)[Crossref]
  • [20] K. Yashiro, T. Suzuki, A. Kaimai, H. Matsumoto, Y. Nigara, T. Kawada, J. Mizusaki, J. Sfeir, J. Van Herle, Solid State Ionics 175, 341 (2004)[Crossref]
  • [21] T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994)[Crossref]
  • [22] C.B. Choudhary, H.S. Maiti, E.C. Subbarao, Solid Electrolytes and Their Applications (Plenum Press, New York, 1980)
  • [23] J. Cheng, P. Shi, H. Zhong, B. Wang, Key Eng. Mater. 336–338, 444 (2007)[Crossref]
  • [24] K. Kawamura, K. Watanabe, T. Hiramatsu, A. Kaimai, Y. Nigara, T. Kawada, J. Mizusaki, Solid State Ionics 144, 11 (2001)[Crossref]
  • [25] Q. Li, V. Thangadurai, Fuel Cells 9, 684 (2009)[Crossref]
  • [26] J. Van Herle, D. Seneviratne, A. J. McEvoy, J. Eur. Ceram. Soc. 19, 837 (1999)[Crossref]
  • [27] J. Milewski, Fuel Cells 12, 709 (2012)[Crossref]
  • [28] J. Milewski, K. Swirski, M. Santarelli, P. Leone (Eds.), Advanced Methods of Solid Oxide Fuel Cell Modeling (Springer-Verlag, London Ltd., 2011)
  • [29] H.C. Park, A.V. Virkar, J. Power Sources 186, 133 (2009)[Crossref]
  • [30] J. Ding, J. Liu, Solid State Ionic 179, 1246 (2008)[Crossref]
  • [31] T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Y. Takita, Chem. Commun. 13, 1227 (1999)[Crossref]
  • [32] J. Milewski, A. Miller, A. Dmowski, P. Biczel, Arch. Thermodynamics 30, 25 (2009)
  • [33] L. Nikonowicz, J. Milewski, J. Power Technologies 91, 82 (2011)
  • [34] A. Pramuanjaroenkij, S. Kakac, X.Y. Zhou, Int. J. Hydrogen Energy 33, 2547 (2008)[Crossref]
  • [35] Y. Xie, X. Xue, Int. J. Hydrogen Energy 34, 6882 (2009)[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.