Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 11 | 2 | 200-204
Tytuł artykułu

A comparison of fluorescein and deuterated water as tracers for determination of constructed wetland retention time

Treść / Zawartość
Warianty tytułu
Języki publikacji
Retention time of treated water in a horizontal subsurface flow constructed wetland was determined in the non-vegetative period using fluorescein and deuterium oxide. Fluorescein served as one of the most frequent tracers detectable at extremely low concentrations by fluorimetry; however, deuterated water (concentrations of deuterium measured by IRMS and expressed as δ (‰) against VSMOW) was used to precisely simulate the treated water flow movement. Tracer retention time (TRT) of fluorescein was 194 h while deuterated water TRT was 192 h. TRT and nominal hydraulic retention time (nHRT, 190 h) were nearly exactly equal. The tracer behavior of deuterated water was almost ideal. On the other hand, the fluorescein movement through the system was slightly influenced by the interaction with the vegetation bed (sorption causing the tailing of tracer-response curves). Nevertheless, both tracers can be successfully used and provide similar results. Retention time is a very important characteristic of a constructed wetland. It is closely connected with the efficiency of the contaminant removal from treated water. It has to be determined correctly when wetland operation parameters are optimized. The choice of the suitable and reliable tracer is always necessary. Fluorescein takes preference with respect to its simple and inexpensive determination. [...]

Opis fizyczny
  • Department of Ecosystem Biology, University of South Bohemia, Faculty of Science, CZ-37005, České Budějovice, Czech Republic
  • Global Change Research Centre, Academy of Sciences of the Czech Republic, CZ-37005, České Budějovice, Czech Republic
  • [1] W.J. Mitsch, J.G. Gosselink, Wetlands (John Wiley & Sons, New York, 2000)
  • [2] J. Vymazal, H. Brix, P.F. Cooper, M.B. Green, R. Haberl, Constructed Wetlands for Wastewater Treatment in Europe (Backhuys Publishers, Leiden, 1998)
  • [3] C.J. Hodgson, J. Perkins, J.C. Labadz, Water Res. 38, 3833 (2004)[Crossref]
  • [4] J.K. Rash, S.K. Liehr, Water Sci. Technol. 40, 309 (1999)[Crossref]
  • [5] J. Garcia, J. Chiva, P. Aguirre, E. Alvarez, J.P. Sierra, R. Mujeriego, Ecol. Eng. 23, 177 (2004)[Crossref]
  • [6] R.H. Kadlec, Ecol. Eng. 3, 345 (1994)[Crossref]
  • [7] T.M. Werner, R.H. Kadlec, Ecol. Eng. 7, 213 (1996)[Crossref]
  • [8] T.M. Werner, R.H. Kadlec, Ecol. Eng. 15, 77 (2000)[Crossref]
  • [9] F.E. Dierberg, T.A. DeBusk, Wetlands 25, 8 (2005)[0008:AEOTTI]2.0.CO;2[Crossref]
  • [10] R.J. Hunt, T.D. Bullen, D.P. Krabbenhoft, C. Kendall, Ground Water 36, 434 (1998)[Crossref]
  • [11] P.L. Smart, I.M.S. Laidlaw, Water Resour. Res. 13, 15 (1977)[Crossref]
  • [12] C.C. Smart, K.C. Karunaratne, Environ. Geol. 42, 492 (2002)[Crossref]
  • [13] T. Kasnavia, D. Vu, D.A. Sabatini, Ground Water 37, 376 (1999)[Crossref]
  • [14] M.W. Becker, T.B. Coplen, Hydrogeol. J. 9, 512 (2001)[Crossref]
  • [15] E. Gaspar, In: E. Gaspar (Ed.), Modern Trends in Tracer Hydrology (CRC Press, Boca Raton, 1987) 49
  • [16] M. Kravčík, J. Pokorný, J. Kohutiar, M. Kováč, E. Tóth, Water for the Recovery of the Climate - A New Water Paradigm (Typopress Publishing House, Košice, 2008)
  • [17] R.A. Werner, W.A. Brand, Rapid Commun. Mass Sp. 15, 501 (2001)[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.