Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 10 | 1 | 54-58
Tytuł artykułu

Low temperature synthesis of cubic phase zinc sulfide quantum dots

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this study, we report on a new method for the synthesis of ZnS quantum dots (QDs). The synthesis was carried out at low temperature by a chemical reaction between zinc ions and freshly reduced sulfide ions in ethanol as reaction medium. Zinc chloride and elemental sulfur were used as zinc and sulfur sources, respectively and hydrazine hydrate was used as a strong reducing agent to convert elemental sulfur (S8) into highly reactive sulfide ions (S2−) which react spontaneously with zinc ions. This facile, less toxic, inexpensive route has a high yield for the synthesis of high quality metal sulfide QDs. Transmission electron microscopy (TEM) image analysis and selected area electron diffraction (SAED) reveal that ZnS QDs are less than 3 nm in diameter and are of cubic crystalline phase. The UV-Vis absorption spectrum shows an absorption peak at 253 nm corresponding to a band gap of 4.9 eV, which is high when compared to the bulk value of 3.68 eV revealing strong quantum confinement. PL emission transitions are observed at 314 nm and 439 nm and related to point defects in ZnS QDs.
Słowa kluczowe

Opis fizyczny
  • Royal Institute of Technology (KTH)
  • [1] A.P. Alivisatos, Science 271, 933 (1996)[Crossref]
  • [2] W. Liu Mater. Lett. 60, 551 (2006)[Crossref]
  • [3] P. Yang, M. Lu, D. Xu, D. Yuan, G. Zhou, J. Lumin. 93, 101 (2001)[Crossref]
  • [4] J.H. Park, S.H. Lee, J.S. Kim, A.K. Kwon, H.L. Park, S.D. Han, J. Lumin. 126, 566 (2007)[Crossref]
  • [5] J.M. Hwang, M.O. Oh, I. Kim, J.K. Lee, C.S. Ha, Curr. Appl Phys. 5, 31 (2005)[Crossref]
  • [6] N. Fathy, M. Ichimura, Sol. Energy Mater. Sol. Cells 87, 747 (2005)[Crossref]
  • [7] H.Z. Zeng, K.Q. Qiu, Y.Y. Du, W.Z. Li, Chin. Chem. Lett. 18, 483 (2007)[Crossref]
  • [8] Y. Li, Y. Ding, Y. Zhang, Y. Qian, J. Phys. Chem. Solids 60, 13 (1999)[Crossref]
  • [9] M. Jayalakshmi, M.M. Rao, J. Power Sources 157, 624 (2006)[Crossref]
  • [10] Y. Zhao, Y. Zhang, H. Zhu, G.C. Hadjipanayis, J.Q. Xiao, J. Am. Chem. Soc. 126, 6874 (2004)[Crossref]
  • [11] L.P. Wang, G.Y. Hong, Mater. Res. Bull. 35, 695(2000)[Crossref]
  • [12] J. Zhu, M. Zhou, J. Xu, X. Liao, Mater. Lett. 47, 25 (2001)[Crossref]
  • [13] J. Joo, H.B. Na, T. Yu, J.H. Yu, Y.W. Kim, F. Wu, J.Z. Zhang, T. Hyeon, J. Am. Chem. Soc. 125, 11100 (2003)[Crossref]
  • [14] D. Denzler, M. Olschewski, K. Sattler, J. Appl. Phys. 84, 2841 (1998)[Crossref]
  • [15] V.T. Liveri, M. Rossi, G.D. Arrigo, D. Manno, G. Micocci, Appl. Phys. A 69, 369 (1999)[Crossref]
  • [16] G.Z. Wang, B.Y. Geng, X.M. Huang, Y.W. Wang, G.H. Li, L.D. Zhang, Appl. Phys. A 77, 933 (2003)[Crossref]
  • [17] J.Q. Sun, X.P. Shen, K.M. Chen, Q. Liu, W. Liu, Solid State Commun. 147, 501 (2008)[Crossref]
  • [18] J.A. Dahl, B.L.S. Maddux, J.E. Hutchison, Chem. Rev. 107, 2228 (2007)[Crossref]
  • [19] H. Tang, G. Xu, L. Weng, L. Pan, L. Wang, Acta Mater. 52, 1489 (2004)[Crossref]
  • [20] L. Brus, J. Phys. Chem. 90, 2555 (1986)[Crossref]
  • [21] A.E. Raevskaya, A.V. Korzhak, A.L. Stroyuk, S.Y. Kuchmii, Theor. Exp. Chem. 41, 111 (2005)[Crossref]
  • [22] N. Revaprasadu, J. Mater. Res. 14, 3237 (1999)[Crossref]
  • [23] W.T. Yao, S.H. Yu, Q.S. Wu, Adv. Funct. Mater. 17, 623 (2007)[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.