PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2011 | 9 | 5 | 798-807
Tytuł artykułu

Determination of 137Cs and 85Sr transport parameters in fucoidic sand columns and groundwater system

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The determination is based on the evaluation of experimentally obtained breakthrough curves using the erfc-function. The first method is founded on the assumption of a reversible linear sorption/desorption isotherm of radionuclides on solid phase with constant distribution and retardation coefficients, whereas the second one is based on the assumption of a reversible non-linear sorption/desorption isotherm described with the Freundlich equation, i.e., with non-constant distribution and retardation coefficients. Undisturbed cores of 5 cm in diameter and 10 cm long were embedded in the Eprosin-type cured epoxide resin column. In this study the so-called Cenomanian background groundwater was used as transport medium. The groundwater containing radionuclides was introduced at the bottom of the columns at about 4 mL h−1 constant flow-rate. The results have shown that in the investigated fucoidic sands: (i) the sorption was in principle characterized by linear isotherms and the corresponding retardation coefficients of 137Cs and 85Sr, depending on the type of sample, were approximately 13 or 44 and 5 or 15, respectively; (ii) the desorption was characterized by non-linear isotherms, and the retardation coefficients of the same radionuclides ranged between 23–50 and 5–25, respectively. The values of the hydrodynamic dispersion coefficients of these radionuclides varied between 0.43–1.2 cm2 h−1. [...]
Wydawca

Czasopismo
Rocznik
Tom
9
Numer
5
Strony
798-807
Opis fizyczny
Daty
wydano
2011-10-01
online
2011-07-24
Twórcy
  • Waste Disposal Department, Chemistry of Fuel Cycle and Waste Management Division, Nuclear Research Institute, 250 68, Husinec-Řež, Czech Republic, pas@ujv.cz
  • Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 115 19, Prague, Czech Republic
Bibliografia
  • [1] P. Franta et al., In: B.J. Merkel, A. Hasche-Berger (Eds.), Some approaches to the study of contamination in the fucoid sandstone at Stráž pod Ralskem site - Northern Bohemia, Czech Republic Uranium Mining and Hydrogeology (Springer-Verlag, Berlin Heidelberg 2008) 71
  • [2] T. Pačes et al., In: W.M. Edmunds, P. Shand (Eds.), The Cenomanian and Turonian Aquifers of the Bohemian Cretaceous Basin, Czech Republic, Natural Groundwater Quality (Blackwell Publishing, Malden-Oxford-Victoria, 2008)
  • [3] C.G.J. Appello, D. Postma, Geochemistry, groundwater and pollution (Balkema, Rotterdam, 1993) 535
  • [4] W.R. Alexander, P.A. Smith, I.G. McKinley, In: E.M. Scott (Ed.), Modeling radionuclide transport in the geological environment, Modeling Radioactivity in the Environment (Elsevier, Amsterdam, 2003) 109
  • [5] N. Cadelli et al., Performance Assessment of Geological Isolation Systems (PAGIS), (Commission of European Communities, Luxembourg, 1988) EUR 11775, 46
  • [6] A.J. Valocchi, Water. Resour. Res. 21, 808 (1985) http://dx.doi.org/10.1029/WR021i006p00808[Crossref]
  • [7] J.E. Saiers, G.M. Hornberger, J. Contam. Hydrol 22, 255 (1996) http://dx.doi.org/10.1016/0169-7722(95)00094-1[Crossref]
  • [8] M. Flury, Sz. Czigány, Gang Chen, J.B. Harsh, J. Contam. Hydrol. 71, 111 (2004) http://dx.doi.org/10.1016/j.jconhyd.2003.09.005[Crossref]
  • [9] D.J. Sims, W.S. Andrews, K.A.M. Creber, X. Wang, J. Radioanal. Nucl. Chem. 263, 619 (2005) http://dx.doi.org/10.1007/s10967-005-0633-9[Crossref]
  • [10] S. Szenknect, C. Ardois, J.P. Gaudet, V. Barthes, J. Contam. Hydrol. 76, 139 (2005) http://dx.doi.org/10.1016/j.jconhyd.2004.08.003[Crossref]
  • [11] Š. Palágyi, K. Štamberg, Radiochim. Acta 98, 359 (2010) http://dx.doi.org/10.1524/ract.2010.1729[Crossref]
  • [12] Š. Palágyi, K. Štamberg, H. Vodičková, J. Radioanal. Nucl. Chem. 283, 629 (2010) http://dx.doi.org/10.1007/s10967-009-0393-z[Crossref]
  • [13] Š. Palágyi, P. Franta, H. Vodičková, J. Radioanal. Nucl. Chem. 286, 317 (2010) http://dx.doi.org/10.1007/s10967-010-0721-3[Crossref]
  • [14] Š. Palágyi, A. Laciok, Czechoslov. J. Phys. 56, D483 (2006)
  • [15] J. Spanier, K.B. Oldham, The Error Function erf(x) and Its Complement erfc(x) (Chapter 40) and The exp(x) and erfc(√x) and Related Functions (Chapter 41). In: An Atlas of Functions (Hemisphere, Washington, DC, 1987) 385 and 395
  • [16] E.T. Whittaker, G.N. Watson, A Course in Modern Analysis, 4th edition (Cambridge University Press, Cambridge, 1990)
  • [17] K. Ebert, H. Ederer, Computeranwendungen in der Chemie (VCH Verlagsgesellschaft mbH, Weinheim, 1985) (In German)
  • [18] A.L. Herbelin, J.C. Westall, FITEQL - A Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data, Version 3.2., Report 94-01 (Department of Chemistry, Oregon State University, Corvallis, Oregon, 1996)
  • [19] L. Dvořák, M. Ledvinka, M. Sobotka, Famulus 3.1. (Computer Equipment, Prague, 1991)
  • [20] P. Germann, In: M.G. Anderson, P.D. Bates (Eds), A hydromechanical approach to Preferential Flow (Chapter 10), Model Validation - Perspectives in Hydrological Sciences (John Wiley & Sons, Chichester, 2001) 233
  • [21] V. Brendler, res3T - Rossendorf Expert System for Surface and Sorption Thermodynamics, 2nd Release from January 24, 2006 (Forschungszentrum Rossendorf e.V., Institute of Radiochemistry, Dresden, Germany)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11532-011-0076-9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.