Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2010 | 8 | 1 | 70-76
Tytuł artykułu

Ionisation potential and electron affinity of free 5′,8-cyclopurine-2′-deoxynucleosides. DFT study in gaseous and aqueous phase

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oxidatively generated damage to DNA frequently appears in the human genome as an effect of aerobic metabolism or as the result of exposure to exogenous oxidizing agents. Due to these facts it was decided to present, for the first time, the electron affinity, ionization potential of 5′,8-cyclo-2′-deoxyadenosine/guanosine (cdA, cdG) in their 5′R and 5′S diastereomeric forms. For all points of quantum mechanics studies presented, the density functional theory (DFT) with B3LYP parameters on 6-311++G** basis set level was used. The zero-point vibrational corrected adiabatic electron affinity (AEA) and adiabatic ionization potential (AIP) were calculated. Additionally the vertical electron affinity (VEA), vertical detachment energy (VDE) and vertical ionization potential were taken into consideration. AEA in eV (gaseous/aqueous phase) are as follows: 0.3/1.81 (5′R)cdA, 0.13/1.76 (5′S)cdA, 0.17/1.49 (5′R)cdG, 0.14/1.53 (5′S)cdG and AIP followed the order 7.43/5.59(5′S)cdG, 7.49/5.60(5′R)cdG, 7.77/5.97(5′R)cdA, 7.84/5.93(5′S)cdA. The obtained AIPs were found to be lower than that for corresponding natural nucleosides. Therefore, even though the 5′,8-cyclopurine-2′-deoxynucleoside level in a cell was judged as low, they can play an important role in the stability, replication and transcription of genes. [...]
Wydawca

Czasopismo
Rocznik
Tom
8
Numer
1
Strony
70-76
Opis fizyczny
Daty
wydano
2010-02-01
online
2010-02-16
Twórcy
Bibliografia
  • [1] J. Cadet, P. Vigny, In: H. Morrison (Ed.), Bioorganic Photochemistry (Wiley, New York, 1990)
  • [2] J. Cadet, T. Douki, J.-L. Ravanat, In: J. Fuchs, M. Podda, L. Packer (Eds.), Redox-genome interactions in health and disease (Marcel Dekker Inc, New York, 2003)
  • [3] J. Cadet, T. Douki, D. Gasparutto, J-L. Ravanat, Mutat. Res. 5, 531 (2003)
  • [4] M.S. Cooke, M.D. Evans, M. Dizdaroglu, J. Lunec, FASEB J. 17, 1195 (2003) http://dx.doi.org/10.1096/fj.02-0752rev[Crossref]
  • [5] M.K. Shukla, J. Leszczynski, J. Biomol. Struct. Dynam. 25, 93 (2007) [Crossref]
  • [6] A. Sancar, L.A. Lindsey-Boltz, K. Ünsal-Kaçmaz, S. Linn, Annu. Rev. Biochem. 73, 39 (2004) http://dx.doi.org/10.1146/annurev.biochem.73.011303.073723[Crossref]
  • [7] P.J. Brooks, DNA Repair 7, 1168 (2008) http://dx.doi.org/10.1016/j.dnarep.2008.03.016[Crossref]
  • [8] P. Jaruga, M. Dizdaroglu, DNA Repair 7, 1413 (2008) http://dx.doi.org/10.1016/j.dnarep.2008.06.005[Crossref]
  • [9] A. Sancar, J.T. Reardon, In: W. Yang (Ed.), Advances in Protein Chemistry (Elsevier Academic Press, New York, 2004) 69
  • [10] K. Renderath, G-D. Zhou, R.L. Somers, J.H. Robbins, P.J. Brooks, J. Biol. Chem. 276, 36051 (2001) and references therein http://dx.doi.org/10.1074/jbc.M105472200[Crossref]
  • [11] K. Miaskiewicz, J.H. Miller, A.F. Fuciarelli, Nucleic Acids Res. 23, 515 (1995) http://dx.doi.org/10.1093/nar/23.3.515[Crossref]
  • [12] P. Hobza, J. Šponer, Chem. Rev. 99, 3247 (1999) http://dx.doi.org/10.1021/cr9800255[Crossref]
  • [13] K. Keck, Z. Naturforsch B 23, 1034 (1968)
  • [14] H.P.C. Hogenkamp, J.Biol. Chem. 238, 477 (1962)
  • [15] J. Cadet, T. Douki, D. Gasparutto, J-L. Ravanat, Rad. Phys. Chem. 72, 293 (2005) http://dx.doi.org/10.1016/j.radphyschem.2003.12.059[Crossref]
  • [16] P. Jaruga, M. Birincioglu, H. Rodriguez, M. Dizdaroglu, Biochemistry 41, 3703 (2002) http://dx.doi.org/10.1021/bi016004d[Crossref]
  • [17] M. Dizdaroglu, P. Jaruga, H. Rodriguez, Free Radical Biol. Med. 30, 774 (2001) http://dx.doi.org/10.1016/S0891-5849(01)00464-6[Crossref]
  • [18] E.E. Schroder, J.C. Budzinski, J. D. Wallace, J.D. Zimbrick, H. C. Box, Int. J. Radiat. Biol. 68, 509 (1995) http://dx.doi.org/10.1080/09553009514551501[Crossref]
  • [19] M.-L. Dirksen, W.F. Brakely, E. Holwitt, M. Dizdaroglu, Int. J. Radiat. Biol. 54, 195 (1988) http://dx.doi.org/10.1080/09553008814551631[Crossref]
  • [20] B.J. Brooks, Neuroscience 145, 1407 (2007) http://dx.doi.org/10.1016/j.neuroscience.2006.10.025[Crossref]
  • [21] I. Kuraoka et al., J. Biol. Chem. 276, 49283 (2001) http://dx.doi.org/10.1074/jbc.M107779200[Crossref]
  • [22] F. Altieri, C. Grillo, M. Maceroni, S. Chicharelli, Antioxid. Redox Signal 10, 891 (2008) http://dx.doi.org/10.1089/ars.2007.1830[Crossref]
  • [23] D. Gasparutto, A.G. Bourdat, C. D’Ham, V. Durate, J. Cadet, Biochimie 82, 19 (2000) http://dx.doi.org/10.1016/S0300-9084(00)00347-3[Crossref]
  • [24] W.J. Hehre, L. Radom, P. Schleyer, R.J.A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986)
  • [25] R. Krishnan, H.B. Schlegel, J.A. Pople, J.Chem. Phys. 72, 4654 (1980) http://dx.doi.org/10.1063/1.439708[Crossref]
  • [26] L.T. Nguyen, T.N. Le, M.T. Nguyen, J. Chem. Soc., Faraday Trans. 94, 3541 (1998) http://dx.doi.org/10.1039/a806630b[Crossref]
  • [27] S. Miertus, J. Tomasi, Chem. Phys. 65, 239 (1982) http://dx.doi.org/10.1016/0301-0104(82)85072-6[Crossref]
  • [28] F.A. Evangelista, A. Paul, H.F. Schaefer III, J. Phys. Chem. A 108, 3566 (2004)
  • [29] J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Method, 2nd edition (Gaussian, Inc. Pittsburgh, PA, 1996)
  • [30] M.J. Frischet et al., Gaussian 03W, Revision D.01 (Gaussian, Inc., Wallingford CT, USA, 2004)
  • [31] B. Giese, A. Biland, Chem. Commun. 667 (2002) [Crossref]
  • [32] B. Armitage, Chem. Rev. 98, 1171 (1998) http://dx.doi.org/10.1021/cr960428+[Crossref]
  • [33] C.J. Burrows, J.G. Muller, Chem. Rev. 98, 1109 (1998) http://dx.doi.org/10.1021/cr960421s[Crossref]
  • [34] A.K. Ghosh, G.B. Schuster, J. Am. Chem. Soc. 128, 4172 (2006) http://dx.doi.org/10.1021/ja0573763[Crossref]
  • [35] M.K. Shukla, J. Leszczynski, In: J. Sponer, F. Lankas (Eds.), Computational Studies of RNA and DNA (Springer, New York, 2006)
  • [36] N. Russo, M. Toscano, A. Grand, J. Comput. Chem. 21, 1243 (2000) http://dx.doi.org/10.1002/1096-987X(20001115)21:14<1243::AID-JCC3>3.0.CO;2-M[Crossref]
  • [37] S.D. Wetmore, R.J. Boyd, L.A. Eriksson, Chem. Phys. Lett. 322, 129 (2000) http://dx.doi.org/10.1016/S0009-2614(00)00391-2[Crossref]
  • [38] X. Yang, X-B. Wang, E.R. Vorpagel, L-S. Wang, Proc. Natl. Acad. Sci. USA. 101, 17588 (2004) http://dx.doi.org/10.1073/pnas.0405157101[Crossref]
  • [39] J. Cadet et al., Nuc. Instr. Meth. Phys. Res B. 151, 1 (1999) http://dx.doi.org/10.1016/S0168-583X(99)00117-2[Crossref]
  • [40] V. Gomzi, J.N. Herak, J. Mol. Struct. (Theochem) 683, 155 (2004) http://dx.doi.org/10.1016/j.theochem.2004.07.005[Crossref]
  • [41] J. Bernas, D. Grand, E. Amouyal, J. Phys. Chem. 84, 1259 (1980) http://dx.doi.org/10.1021/j100447a039[Crossref]
  • [42] C. Dherin, D. Gasparutto, T.R. O’Connor, J. Cadet, S. Bpitex, Int. J. Radiat. Biol. 80, 21 (2004) http://dx.doi.org/10.1080/09553000310001632976[Crossref]
  • [43] M.V. Orlov, A.N. Smirnov, Y.M. Varshavsky, Tetrahedron. Lett. 48, 4377 (1976) http://dx.doi.org/10.1016/0040-4039(76)80120-7[Crossref]
  • [44] A.O. Alyoubi, R.H. Hilal, Biophys. Chem. 55, 231 (1995) http://dx.doi.org/10.1016/0301-4622(95)00002-F[Crossref]
  • [45] A. Ghosh, A. Joy, G.B. Shuster, T. Douki, J. Cadet, Org. Biomol. Chem. 6, 916 (2008) http://dx.doi.org/10.1039/b717437c[Crossref]
  • [46] R.N. Barnett, C.L. Cleveland, U. Landman, E. Boone, S. Kanvah, G.B. Schuster, J. Phys. Chem. A 107, 3525 (2003) http://dx.doi.org/10.1021/jp022211r[Crossref]
  • [47] T. Takada, K. Kawai, M. Fujitsuka, T. Majima, Proc. Natl. Acad. Sci. USA. 101, 14002 (2004) http://dx.doi.org/10.1073/pnas.0402756101[Crossref]
  • [48] K. Kawai, T. Takada, S. Tojo, T. Majima, J. Am. Chem. Soc. 125, 6842 (2003) http://dx.doi.org/10.1021/ja034953j[Crossref]
  • [49] K. Kawai, T. Takada, S. Tojo, T. Majima, J. Am. Chem. Soc. 126, 1125 (2004) http://dx.doi.org/10.1021/ja035730w[Crossref]
  • [50] T. Takada, K. Kawai, M. Fujitsuka, T. Majima, J. Am. Chem. Soc. 128, 11012 (2006) http://dx.doi.org/10.1021/ja0641554[Crossref]
  • [51] B. Giese, Curr. Opin.Chem. Biol. 6, 612 (2002) http://dx.doi.org/10.1016/S1367-5931(02)00364-2[Crossref]
  • [52] B. Giese, Acc. Chem. Res. 33, 631 (2000) http://dx.doi.org/10.1021/ar990040b[Crossref]
  • [53] A.N. Rihardson, J. Gu, S. Wang, Y. Xie, H.F. Schaefer III, J. Am. Chem. Soc. 126, 4404 (2004) http://dx.doi.org/10.1021/ja030487m[Crossref]
  • [54] J.R. Wiley, J.M. Robinson, S. Ehdaie, E.C.M. Chen, E.S.D. Chen, W.E. Wentworth, Biochem. Biophys. Res. Comm. 180, 841 (1991) http://dx.doi.org/10.1016/S0006-291X(05)81141-6[Crossref]
  • [55] C. Desfrancosi, H. Abdoul-Carime, J.P. Scherman, J. Chem. Phys. 104, 7792 (1996) http://dx.doi.org/10.1063/1.471484[Crossref]
  • [56] J.C. Rienstra-Kiracofe, G.S. Tschumper, H.F. Schaefer III, S. Nandi, G.B. Ellison, Chem. Rev. 102, 231 (2002) http://dx.doi.org/10.1021/cr990044u[Crossref]
  • [57] B. Karwowski, J.Mol. Struc. - Theochem (in press)
  • [58] N.A. Oyler, L. Adamowicz, J. Phys. Chem. 97, 11122 (1993) http://dx.doi.org/10.1021/j100144a037[Crossref]
  • [59] P. Sarmah, R.C. Deka, Mol. Simulat. 34, 879 (2008) http://dx.doi.org/10.1080/08927020802235664[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11532-009-0105-0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.