Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Molecular dynamics NVE simulations have been performed for five thermodynamic states of water including ambient, sub-and supercritical conditions. Clustering of molecules via hydrogen bonding interaction has been studied with respect to the increasing temperature and decreasing density to examine the relationship between the extent of hydrogen bonding and macroscopic properties. Calculations confirmed decrease of the average number of H-bonds per molecule and of cluster-size with increasing temperature and decreasing density. In the sub-and supercritical region studied, linear correlations between several physical quantities (density, viscosity, static dielectric constant) and the total engagement of molecules in clusters of size k > 4, Pk>4, have been found. In that region there was a linear relationship between Pk>4 and the average number of H-bonds per water molecule. The structural heterogeneity resulting from hydrogen bonding interactions in low-density supercritical water has been also discussed. [...]
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
555-561
Opis fizyczny
Daty
wydano
2008-12-01
online
2008-10-28
Twórcy
autor
- Institute of Applied Radiation Chemistry, Technical University of Lodz, 90-924, Lodz, Poland, swiatlad@p.lodz.pl
autor
- Institute of Applied Radiation Chemistry, Technical University of Lodz, 90-924, Lodz, Poland
autor
- Institute of Applied Radiation Chemistry, Technical University of Lodz, 90-924, Lodz, Poland
Bibliografia
- [1] E. Kiran, P. G. Debenedetti, C. J. Peters (Eds); Supercritical Fluids. Fundamentals and Applications, NATO Science Series E: Applied Science - vol. 366 (Kluwer Academic Publishers, 2000)
- [2] D. A. Palmer, R. Fernandez-Prini, A. H. Harvey (Eds); Aqueous Systems at Elevated Temperatures and Pressures (Elsevier, 2004)
- [3] A. Kruse, E. Dinjus, J. Supercritical Fluids, 39, 362 (2007) http://dx.doi.org/10.1016/j.supflu.2006.03.016[Crossref]
- [4] A. G. Kalinichev, In: R. T. Cygan, J. D. Kubicki (Eds); Reviews in Mineralogy and Geochemistry, vol. 42 (Mineralogical Society of America, Washington D. C., 2001) 83
- [5] M.-C. Bellissent-Funel, J. Mol. Liq. 90, 313 (2001) http://dx.doi.org/10.1016/S0167-7322(01)00135-0[Crossref]
- [6] R. D. Mountain, J. Chem. Phys. 110, 2109 (1999) http://dx.doi.org/10.1063/1.477853[Crossref]
- [7] D. Swiatla-Wojcik, Chem. Phys. 342, 260 (2007)
- [8] P. Bopp, G. Jancso, K. Heinzinger, Chem. Phys. Lett. 98, 129 (1983) http://dx.doi.org/10.1016/0009-2614(83)87112-7[Crossref]
- [9] F. H. Stillinger, A. Rahman, J. Chem. Phys. 68, 666 (1978) http://dx.doi.org/10.1063/1.435738[Crossref]
- [10] B. Guillot, Y. Guissani, J. Chem. Phys. 108, 10162 (1998) http://dx.doi.org/10.1063/1.476475[Crossref]
- [11] H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987) http://dx.doi.org/10.1021/j100308a038[Crossref]
- [12] I. Ruff, D. J. Diestler, J. Chem. Phys. 93, 2032 (1990) http://dx.doi.org/10.1063/1.459080[Crossref]
- [13] M. P. Allen, D. J. Tildesley; Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)
- [14] T. Head-Gordon, G. Hura, Chem. Rev. 102, 2651 (2002) http://dx.doi.org/10.1021/cr0006831[Crossref]
- [15] Ph. Wernet, D. Testemale, J.-L. Hazemann, R. Argoud, P. Glatzel, L. G. M. Pettersson, A. Nilsson, U. Bergmann, J. Chem. Phys. 123, 154503 (2005)
- [16] N. Matubayasi, C. Wakai, M. Nakahara, J. Chem. Phys. 107, 9133 (1997) http://dx.doi.org/10.1063/1.475205[Crossref]
- [17] T. Yamaguchi, J. Mol. Liq. 78, 43 (1998) http://dx.doi.org/10.1016/S0167-7322(98)00083-X[Crossref]
- [18] R. L. Blumberg, H. E. Stanley, A. Geiger, P. Mausbach, J. Chem. Phys. 80, 5230 (1984) http://dx.doi.org/10.1063/1.446593[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11532-008-0059-7