Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2008 | 6 | 2 | 304-309
Tytuł artykułu

Theoretical study on the mechanism of reaction between 3-hydroxy-3-methyl-2-butanone and malononitrile catalyzed by lithium ethoxide

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The The mechanism of reaction between 3-hydroxy-3-methyl-2-butanone and malononitrile for the synthesis of 2-dicyanomethylene-4, 5, 5-trimethyl-2,5-dihydrofuran-3-carbonitrile catalyzed by lithium ethoxide was investigated by density functional theory (DFT). The geometries and the frequencies of reactants, intermediates, transition states and products were calculated at the B3LYP/6-31G(d) level. The vibration analysis and the IRC analysis verified the authenticity of transition states. The reaction processes were confirmed by the changes of charge density at the bond-forming critical point. The results indicated that lithium ethoxide is an effective catalyst in the synthesis of 2-dicyanomethylene-4, 5, 5-trimethyl-2, 5-dihydrofuran-3-carbonitrile from malononi-trile and 3-hydroxy-3-methyl-2-butanone. The activation energy of the reaction with lithium ethoxide was 115.86 kJ·mol−1 less than the uncatalyzed reaction. The mechanism of the lithium ethoxide catalyzed reaction differed from the mechanism of the uncatalyzed reaction.
Wydawca

Czasopismo
Rocznik
Tom
6
Numer
2
Strony
304-309
Opis fizyczny
Daty
wydano
2008-06-01
online
2008-04-17
Twórcy
autor
  • College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610066, People’s Republic of China
autor
  • College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
Bibliografia
  • [1] L.R. Dalton, J. Phys.-Condens. Mat. 15, 897 (2003) http://dx.doi.org/10.1088/0953-8984/15/20/203[Crossref]
  • [2] L.R. Dalton, Opt. Eng. 39, 589 (2000) http://dx.doi.org/10.1117/1.602403[Crossref]
  • [3] M. He, T.M. Leslie, J.A. Sinicropi, S.M. Ganer, L.D. Reed, Chem. Mater. 14, 4669 (2002) http://dx.doi.org/10.1021/cm0204066[Crossref]
  • [4] D. Jin et al., Proc. of SPIE 5351, 44 (2004)
  • [5] M. Padma et al., J. Am. Chem. Soc. 126, 1741 (2004) http://dx.doi.org/10.1021/ja039768k[Crossref]
  • [6] S.Y. Li, Y.Y. Song, Z.L. You, Y.W. Wen, J.G. Qin, Acta Cryst. 61, 2093 (2005)
  • [7] M. He, T.M. Leslie, J.A. Sinicropi, Chem. Mater. 14, 2393 (2002) http://dx.doi.org/10.1021/cm011734t[Crossref]
  • [8] G. Melikian, C.A. Rouessac, Synth. Commun. 25, 3045 (1995) http://dx.doi.org/10.1080/00397919508011437[Crossref]
  • [9] Z. Tao, P.G. Kun, Q. Ling, S.Y. Quan, Synthetic Commun. 36, 1367 (2006) http://dx.doi.org/10.1080/00397910500522066[Crossref]
  • [10] R.F.W. Bader, Atoms In Molecules. A Quantum Theory (Calarendon, Oxford, UK, 1990) [WoS]
  • [11] P.L. Prpelier, Atoms In Molecules. An Introduction (Pearson Education, Halow, UK, 1999)
  • [12] M.J. Frisch et al., Gaussian, Inc., Pittsburgh PA, 2003
  • [13] D. Modificatio, E. Knoevenagel, Ber. 31, 2596 (1898)
  • [14] O. Doebner, Ber. 33, 2140 (1900)
  • [15] J.R. Johnson, In: Organic Reactions, 226, (New York, 1942) 1
  • [16] L.F. Fieser and M. Fieser, Organic Chemistry, 3rd edition, 692, (New York, 1956)
  • [17] H.B. Watsson, Annual Reports on Progress Chem. Chem. Soc. London 36, 210 (1939)
  • [18] Baliah, Gannapathy, J. Indian Chem. Soc. 32, 333 (1955)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11532-008-0004-9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.