Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 5 | 4 | 1007-1018
Tytuł artykułu

Conformational study on the structures and energies of the weakly bound complexes of AlCl3 with diatomic molecules

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this work we present the results of high level ab initio calculations on weakly bound complexes of aluminium trichloride and hydrogen halides, HX, halogens, X2 and diatomic interhalogens, XY (where X, Y = F, Cl, Br). Based upon these calculations we have predicted that all structures in the staggered conformation (except for Cl3AlFH and Cl3AlClH) are stable minima while those in the eclipsed configurations are transition state structures. In the XH complexes the strength of interaction with the Cl3Al group is FH > ClH > BrH. In the case of X2 species it is Br2 > F2 > Cl2, and finally in the XY (YX) group it is: FBr > ClBr > FCl > BrCl > BrF > ClF. [...]

Opis fizyczny
  • Instituto de Química, Universidad Nacional Autónoma de México, 04510, México, D.F., México
  • Instituto de Química, Universidad Nacional Autónoma de México, 04510, México, D.F., México,
  • Département de Chimie, Université Cadi Ayyad, Faculté des Sciences Semlalia, B.P. 2390, Marrakech, Morocco
  • [1] P. Hassanzadeh, A. Citra, L. Andrews and M. Neurock: “Laser-Evaporated Aluminum Atom Reactions with Halogen Molecules. Infrared Spectra of AlXn (X = F, Cl, Br, I; n = 1–3) in Solid Argon”, J. Phys. Chem., Vol. 100, (1996), pp. 7317–7325.[Crossref]
  • [2] A. Suelson: “Bending frequency of gaseous aluminum oxide”, J. Phys. Chem., Vol. 74, (1970), pp. 2574–2575.[Crossref]
  • [3] E.D. SamSonov, S.B. Osin and V.F. Shevelkov: “IR spectroscopic study of reaction products of aluminum and gallium atoms with chlorine in argon matrix”, Russ. J. Inorg. Chem., Vol. 33, (1988), pp. 1598–1605.
  • [4] M. Wilson, M.B. Coolidge and G.J. Mains: “Stability and structure of Lewis adducts of aluminum hydrides and halides”, J. Phys. Chem., Vol. 96, (1992), pp. 4851–4859.[Crossref]
  • [5] R.G.S. Pong, A.E. Shirk and J.S. Shirk: “Infrared spectra of aluminum chloride bromide (AlCl2Br, AlClBr2), and aluminum bromide in solid argon”, J. Chem. Phys., Vol. 70, (1979), pp. 525–531.[Crossref]
  • [6] C.E. Sjoegren, P. Klaeboe and E. Ryther: “High temperature infrared spectra of dimeric and monomeric aluminum bromide, aluminum iodide and gallium chloride in the vapor phase”, Spectrochim. Acta, Vol. 40a, (1984), pp. 457–465.
  • [7] P.G. Jasien: “Lewis acid-base complexes of aluminum chloride”, J. Phys. Chem., Vol. 96, (1992), pp. 9273–9278.[Crossref]
  • [8] T.J. LePage and K.B. Wiberg: “Rotational barriers in aldehydes and ketones coordinated to neutral Lewis acids”, J. Am. Chem. Soc., Vol. 110, (1988), pp. 6642–6650.[Crossref]
  • [9] J.W. Cannolly and D.S. Dudis: “Binding Energies of Some Aluminum Chloride Complexes of Poly(p-phenylenebenzobisthiazole) (PBZT) Model Compounds”, Macromolecules, Vol. 27, (1994), pp. 1423–1427[Crossref]
  • [10] D.W. Ball: “Ab Initio Studies of AlH3-H2O, AlF3-H2O, and AlCl3-H2O Complexes”, J. Phys. Chem., Vol. 99, (1995), pp. 12786–12789.[Crossref]
  • [11] O. Gropen, R. Johansen, A. Haaland and O. Stokeland: “Ab initio molecular orbital calculations on aquotrihydroaluminum, di-m-hydroxytetrahydrodialuminum, and some related species”, J. Organomet. Chem., Vol. 92, (1975), pp. 147–156.[Crossref]
  • [12] G.N. Papatheodorou, L.A. Curtiss and V.A. Maroni: “Raman spectra, ab initio molecular orbital calculations, vibrational analysis, and thermodynamic functions for ammonia:AlX3 (X = F,Cl,Br)”, J. Chem. Phys., Vol. 78, (1983), pp. 3303–3315.[Crossref]
  • [13] R. Zannetti, C. Marega, A. Marigo, A. Martorana: “Layer-lattices in Ziegler-Natta catalysts”, J. Polym. Sci., Part B: Polymer Physics, (1988), Vol. 26, (1988), p. 2399.[Crossref]
  • [14] D. Dou, D.R. Ketchum, E.J.M. Hamilton, P.A. Florian, K.E. Vermillon, P.J. Grandinetti and S.G. Shore: “Reactions of Aluminum Hydride Derivatives with Ammonia-Borane: A New Approach toward AlN/BN Materials”, Chem. Mater., Vol. 8, (1996), pp. 2839–2842.[Crossref]
  • [15] S. Sakai: “Theoretical studies of the mechanism of the alumination reaction of ethylene as a Ziegler-Natta-type reaction model”, J. Phys. Chem., Vol. 95, (1991), pp. 175–178.[Crossref]
  • [16] S. Sakai: “A theoretical investigation of Ziegler-Natta polymerization reaction mechanisms of acetylene”, J. Phys. Chem., Vol. 95, (1991), pp. 7089–7093.[Crossref]
  • [17] S. Bates and J. Dwyer: “Ab initio study of carbon monoxide adsorption on zeolites”, J. Phys. Chem., Vol. 97, (1993), pp. 5897–5900.[Crossref]
  • [18] A.H. Edwards and K.A. Jones: “Molecular orbital calculations on methyl alkyls and hydrides used in the organometallic vapor phase epitaxy of some III-V”, J. Chem. Phys., Vol. 94, (1991), pp. 2894–2895.[Crossref]
  • [19] J. Che, H.-S. Choe, Y.-M. Chook, E. Jensen, P.R. Seida and M.M. Franci: “π-Complexes of alkenes to trivalent aluminum”, Organometallics, Vol. 9, (1990), pp. 2430–2436.[Crossref]
  • [20] J.L. Atwood, F.R. Bennett, F.M. Elms, C. Jones, C.L. Raston and K.D. Robinson: “Tertiary amine stabilized dialane”, J. Am. Chem. Soc., Vol. 113, (1991), pp. 8183–8285.[Crossref]
  • [21] C.M.B. Marsh, T.P. Hamilton, Y. Xie and H.F. Schaefer: “Ammonia alane”, J. Chem. Phys., Vol. 96, (1992), pp. 5310–5317.[Crossref]
  • [22] A. Haaland: “Covalent and dative bonds to main group metals, a useful difference”, Angew. Chem. Int. Edit., Vol. 101, (1989), pp. 1017–1032.
  • [23] P. Jungwirth and R. Zahradník: “On the stability of XH3YH3 charge-transfer complexes (X = B, Al, Ga, In and Y = N, or P for X = B, Al): an ab initio study”, J. Mol. Struct. (Theochem), Vol. 283, (1993), pp. 317–320.[Crossref]
  • [24] V. Branchadell, A. Sbai and A. Oliva: “Density Functional Study of Complexes between Lewis Acids and Bases”, J. Phys. Chem., Vol. 99, (1995), pp. 6472–6476.[Crossref]
  • [25] A.Y. Timoshkin, A. Suvorov, V. Bettinger and H. F. Schaefer: “Role of the Terminal Atoms in the Donor-Acceptor Complexes MX3-D (M = Al, Ga, In; X = F, Cl, Br, I; D = YH3, YX3, X-; Y = N, P, As)”, J. Am. Chem. Soc., Vol. 121, (1999), pp. 5687–5699.[Crossref]
  • [26] H. Anane, A. Jarid and A. Boutalib: “G2(MP2) Molecular Orbital Study of [H3AlXH3]-(X = C, Si, and Ge) and H3AlYH3 (Y = N, P, and As) Complexes”, J. Phys. Chem. A, Vol. 103, (1999), pp. 9847–9852.[Crossref]
  • [27] A. Jarid and A. Boutalib: “G2 Molecular Orbital Study of [H3AlXH]-(X = NH, PH, AsH, O, S, and Se) and H3AlYH (Y = OH, SH, SeH, F, Cl, and Br) Donor-Acceptor Complexes”, J. Phys. Chem. A, Vol. 104, (2000), pp. 9220–9225.[Crossref]
  • [28] A. Jarid, A. Boutalib, I. Nebot-Gil and F. Tomás: “Comparative G2(MP2) molecular orbital study of [H3AlX(CH3)2]-(X=N, P, and As) and H3AlY(CH3)2 (Y=O, S, and Se) donor-acceptor complexes”, J. Mol. Struct. (Theochem), Vol. 572, (2001), pp. 161–167.[Crossref]
  • [29] A. Boutalib, A. Jarid, I. Nebot-Gil and F. Tomás: “G2(MP2) Investigation of Alane-[X(CH3)3]-(X = C, Si, and Ge) and Alane-Y(CH3)3 (Y = N, P, and As) Interactions”, J. Phys. Chem. A, Vol. 105, (2001), pp. 6526–6529.[Crossref]
  • [30] H. Anane, A. Jarid, A. Boutalib, I. Nebot-Gil and F. Tomás: “G2(MP2) molecular orbital study of the substituent effect in the H3BPH3-nFn (n=0–3) donor-acceptor complexes”, Chem. Phys. Lett., Vol. 324, (2000), pp. 156–160.
  • [31] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J. B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Wallingford CT, Gaussian 03, Revision C.02, 2004.
  • [32] J.A. Pople, H.B. Schlegel, J.S. Binkly, M.J. Frisch, R.A. Whitside, R.F. Hout and W.J. Hehre: “Molecular orbital studies of vibrational frequencies”, Int. J. Quantum Chem. Symp., Vol. 15, (1981), pp. 269–278.
  • [33] L.A. Curtiss, K. Ragavachari and J.A. Pople: “Gaussian-2 theory using reduced Moeller-Plesset orders”, J. Chem. Phys., Vol. 98, (1993), pp. 1293–1298.[Crossref]
  • [34] L.A. Curtiss and J.A. Pople: “Theoretical study of tri-m-hydrodihydrodiboron(1+), diborane(6) radical ion(1+), and diborane(6) (B2H5+, B2H6+, and B2H6)”, J. Chem. Phys., (1988), Vol 89, pp. 4875–4879.[Crossref]
  • [35] C. Gonzalez and H.B. Schlegel: “An improved algorithm for reaction path following”, J. Chem. Phys., Vol. 90, (1989), pp. 2154–2161.[Crossref]
  • [36] C. Gonzalez and H.B. Schlegel: “Reaction path following in mass-weighted internal coordinates”, J. Phys. Chem., Vol. 94, (1990), pp. 5523–5527.[Crossref]
  • [37] A.F. Jalbout and A. Boutalib: “Ab Initio Molecular Orbital Investigation of the Amine-Alanes (CH3)nH3-nAlNX3 and Phosphane-Alanes (CH3)nH3-nAlPX3 (X = H, F, and Cl; n = 0–3) Complexes”, J. Phys. Chem. A, Vol. 110, (2006), pp. 12524–12527.
  • [38] A.F. Jalbout, F. Nazari and L. Turker: “Gaussian Based Methods in Molecular Sciences”, J. Mol. Struct. (THEOCHEM), Vol. 671, (2004), pp. 1–24.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.