PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2007 | 5 | 3 | 748-765
Tytuł artykułu

Contact angles of protein black foam films under dynamic and equilibrium conditions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The contact angles of protein Newton black foam films from ALG (alpha-lactalbumin), BLG (beta-lactoglobulin) and BSA (bovine serum albumin) are measured here within. The measurements are carried out under dynamic and equilibrium conditions. For all proteins, a strong hystheresis effect of the contact angle is observed under dynamic conditions. An attempt is made to explain these results by the slow adsorption and desorption kinetics of the protein bilayers and by the dynamic structure and the rheology of the protein network forming the bubble walls. In addition, we propose a modification of the experimental device reported previously for contact angle measurements of large flat films in equilibrium. The advantages of this method are discussed in detail. Some shortcomings (precision, reproducibility) of this preliminary variant of the device in this initial stage of its application, do not allow one to draw reliable conclusions about the interactions of these films. Some improvements of the measurement quality are proposed. [...]
Wydawca

Czasopismo
Rocznik
Tom
5
Numer
3
Strony
748-765
Opis fizyczny
Daty
wydano
2007-09-01
online
2007-09-01
Twórcy
  • CEA-Saclay, DSM/DRECAM, Service de Physique de l’Etat Condense, F-91191, Gif sur Ivett Cedex, France
  • Departement of Physical Chemistry, University of Sofia, 1126, Sofia, Bulgaria
Bibliografia
  • [1] G. Cevc and D. Marsh: Phospholipid Bilayers: Physical Principals and Models, John Wiley and Sons, New York, 1987.
  • [2] D. Exerowa and P.M. Kruglyakov: Foam and foam films: Theory, experiment application, Elsevier, Amsterdam, 1998.
  • [3] D. Exerowa: “Chain-melting phase transition and short-range molecular interactions in phospholipid foam bilayers”, Adv. Colloid Interf. Sci., Vol. 96, (2002), pp. 75–100. http://dx.doi.org/10.1016/S0001-8686(01)00076-8[Crossref]
  • [4] R. Cohen, D. Exerowa, T. Kolarov, et al.: “Thickness transitions in lysolecithin foam films”, Colloid Surface A., Vol. 65, (1992), pp. 201–209. http://dx.doi.org/10.1016/0166-6622(92)80275-7[Crossref]
  • [5] A. Nikolova, R. Koinova, B. Tenchov, D. Exerowa: “Chain-melting phase transition in dipalmitoylphosphatidylcholine foam bilayers”, Chem. Phys. Lipids, Vol. 83, (1996), pp. 111–121. http://dx.doi.org/10.1016/0009-3084(96)02600-X[Crossref]
  • [6] T. Yamanaka, M. Nayashi and R. Matuura: “Studies on the soap films stabilized by phospholipids: I. Effects of metal ions on the free energy of black soap films”, J. Colloid Interf. Sci., Vol. 88, (1982), pp. 458–466. http://dx.doi.org/10.1016/0021-9797(82)90274-0[Crossref]
  • [7] J.L. Toca-Herrera, H.J. Müller, R. Krustev, D. Exerowa and H. Möhwald: “Influence of Na+, Ca2+ on the thickness and free energy of dmpc foam films”, Colloids Surface A, Vol. 144, (1998), pp. 319–326. http://dx.doi.org/10.1016/S0927-7757(98)00544-5[Crossref]
  • [8] J.L. Toca-Herrera, H.J. Müller, R. Krustev, T. Pfohl and H. Möhwald: “Influence of ethanol on the thickness and free energy of film formation of DMPC foam films”, Colloids Surface A, Vol. 152, (1999), pp. 357–365. http://dx.doi.org/10.1016/S0927-7757(98)00871-1[Crossref]
  • [9] J. Brezesinski, H.J. Müller, J.L. Toca-Herrera and R. Krustev: “X-ray diffraction and foam film investigations of PC head group interaction in water/ethanol mixtures”, Chem. Phys. Lipids, Vol. 110, (2001), pp. 183–194. http://dx.doi.org/10.1016/S0009-3084(01)00135-9[Crossref]
  • [10] J.-J. Benattar, M. Nedyalkov, J. Prost, A. Tiss, R. Verger and C. Guilbert: “Insertion Process of a Protein Single Layer within a Newton Black Film”, Phys. Rev. Lett., Vol. 82, (1999), pp. 5297–5300. http://dx.doi.org/10.1103/PhysRevLett.82.5297[Crossref]
  • [11] V. Petkova, C. Sultanem, M. Nedyalkov, J.-J. Benattar, M. Leser and Ch. Schmitt: “Structure of a Freestanding Film of Beta-Lactoglobulin”, Langmuir, Vol. 19, (2003), pp. 6942–6949. http://dx.doi.org/10.1021/la027025r[Crossref]
  • [12] A. Scheludko: “Thin liquid films”, Adv. Colloid Interf. Sci., Vol. 1, (1967), pp. 391–464. http://dx.doi.org/10.1016/0001-8686(67)85001-2[Crossref]
  • [13] I.S. Clunie, Y.F. Goodman and B.T. Yngram: “Thin Liquid Films”, In: E. Matijevich (Ed.): Surface and Colloid Science, Vol. 3, Wiley, New York, 1971, p. 167.
  • [14] D. Exerowa and A. Nikolova: “Short-range Molecular Interactions and Stability of Amphiphilic Bilayers”, J. Dispers. Sci. Technol., Vol. 18, (1997), pp. 683–690. http://dx.doi.org/10.1080/01932699708943766[Crossref]
  • [15] A. Nikolova and D. Exerowa: “Phase transitions in phosphatidylcholine foam bilayers”, J. Stat. Phys., Vol. 78, (1995), pp. 147–160. http://dx.doi.org/10.1007/BF02183343[Crossref]
  • [16] D. Exerowa, A. Nikolova: “Phase transitions in phospholipid foam bilayers”, Langmuir, Vol. 8, (1992), pp. 3102–3108. http://dx.doi.org/10.1021/la00048a041[Crossref]
  • [17] R. Cohen, R. Koynova, B. Tenchov and D. Exerowa: “Direct measurement of interaction forces in free thin liquid films stabilized with phosphatidylcholine”, Eur. Biophys. J., Vol. 20, (1991), pp. 203–208. http://dx.doi.org/10.1007/BF00183456[Crossref]
  • [18] N. Cuvillier, F. Milett, V. Petkova, M. Nedyalkov and J.-J. Benattar: “Structure of Freestanding Phospholipidic Bilayer Films”, Langmuir, Vol. 16, (2000), pp. 5029–5035. http://dx.doi.org/10.1021/la990745m[Crossref]
  • [19] N. Cuvillier, V. Petkova, M. Nedyalkov, F. Milett and J.-J. Benattar: “Protein insertion within a biological freestanding film”, Physica B, Vol. 283, (2000), p. 1–5. http://dx.doi.org/10.1016/S0921-4526(99)01880-3[Crossref]
  • [20] V. Petkova, M. Nedyalkov and J.-J. Benattar: “Freestanding black films of phos pholipids and phospholipid with proteins”, Colloid Surface A, Vol. 190, (2001), pp. 9–16. http://dx.doi.org/10.1016/S0927-7757(01)00660-4[Crossref]
  • [21] V. Petkova, J.-J. Benattar and M. Nedyalkov: “How to Control the Molecular Architecture of a Monolayer of Proteins Supported by a Lipid Bilayer”, Biophys. J., Vol. 82, (2002), pp. 541–548. [Crossref]
  • [22] D. Platikanov, M. Nedyalkov and V. Petkova: “Phospholipid black foam films: dynamic contact angles and gas permeability of DMPC bilayer films”, Adv. Colloid Interf. Sci., Vol. 100-102, (2003), pp. 185–203. http://dx.doi.org/10.1016/S0001-8686(02)00057-X[Crossref]
  • [23] M. Nedyalkov, V. Petkova and D. Platikanov: “Phospholipid black foam films: dynamic film tension of DMPC bilayer films”, Colloid Surface A, Vol. 220, (2003), pp. 35–43. http://dx.doi.org/10.1016/S0927-7757(03)00058-X[Crossref]
  • [24] K. Mysels, H. Huisman and R. Razouk: “Measurement of Contact Angle between Thin Film and Bulk of Same Liquid”, J. Phys. Chem., Vol. 70, (1966), pp. 1339–1340. http://dx.doi.org/10.1021/j100876a519[Crossref]
  • [25] D. Platikanov, G.P. Yampolskaya, N.I. Rangelova, Z.K Angarska, L.E. Bobrova and V.N. Izmailova: “Free Black Protein Films 2. Thermodynamic Parameters”, Colloid. J. USSR, Vol. 43, (1981), pp. 149–153.
  • [26] D. Platikanov, M. Nedyalkov and V. Nasteva: “Line tension of Newton black films. I. Determination by the critical bubble method”, J. Colloid Interf. Sci., Vol. 75(2), (1980), pp. 612–619. http://dx.doi.org/10.1016/0021-9797(80)90484-1[Crossref]
  • [27] V. Petkova, D. Platikanov and M. Nedyalkov: “Phospholipid black foam films: dynamic contact angles and gas permeability of DMPC+DMPG black films”, Adv. Colloid Interf. Sci., Vol. 104, (2003), pp. 37–51. http://dx.doi.org/10.1016/S0001-8686(03)00035-6[Crossref]
  • [28] T. Kolarov, Z. Zorin and D. Platikanov: “Profile of the transition region between aqueous wetting films on quartz and the adjacent meniscus”, Colloid Surface, Vol. 51, (1990), pp. 37–47. http://dx.doi.org/10.1016/0166-6622(90)80130-V[Crossref]
  • [29] H.M. Princen and S.G. Mason: “Shape of a fluid drop at a fluid-liquid interface. I. Extension and test of two-phase theory”, J. Colloid Sci., Vol. 20, (1965), pp. 156–172. http://dx.doi.org/10.1016/0095-8522(65)90005-X[Crossref]
  • [30] B.V. Derjaguin, G.A. Martynov, Yu.V. Gutop: “Thermodynamics and stability of free films”, Kolloidny Zhur., Vol. 27, (1965), p.357–365.
  • [31] D. Platikanov, M. Nedyalkov and V. Nasteva: “Line tension of Newton black films. II. Determination by the diminishing bubble method”, J. Colloid Interf. Sci., Vol. 75(2), (1980), pp. 620–628. http://dx.doi.org/10.1016/0021-9797(80)90485-3[Crossref]
  • [32] M. Nedyalkov and D. Platikanov: “Dependence of the Contact Angle on the Radius of Newton Black Films and the Line Tension”, Abhandlungen Akad Wissensch DDR, Vol. 1, (1985), pp. 123.
  • [33] E. Evans: “Analysis of adhesion of large vesicles to surfaces”, Biophys. J., Vol. 31, (1980), p. 425–431. [Crossref]
  • [34] E. Evans: “Structure and dynamics of membranes: Generic and specific interaction”, In: Lipowsky Sackmann (Ed.): Handbook of Biological Physics, Vol. 1B, Nord Holand, 1995, p. 723.
  • [35] F. Pincet, E. Perez, J. Loudet and L. Lebeau: “From Macroscopic Adhesion Energy to Molecular Bonds: A Test of the Theory”, Phys. Rev. Lett., Vol. 87(17), (2001), p. 178101–178105. http://dx.doi.org/10.1103/PhysRevLett.87.178101[Crossref]
  • [36] D. Tareste, F. Pincet, E. Perez, S. Riskling, C. Mioskowski and L. Lebeau: “Energy of Hydrogen Bonds Probed by the Adhesion of Functionalized Lipid Layers”, Biophys. J., Vol. 83, (2002), p. 3675–3681. http://dx.doi.org/10.1016/S0006-3495(02)75367-8[Crossref]
  • [37] B. Derjaguin and A. Titievskaya: “Disjoing action of free liquid films and its contribution to the stability of foams”, Colloid J. USSR, Vol. 15, (1953), pp. 431–439.
  • [38] D. Platikanov, M. Nedyalkov and N. Rangelova: “Measurement of the film tension of foam films in dynamic conditions”, Colloid Polym. Sci., Vol. 269, (1991), pp. 272–277. http://dx.doi.org/10.1007/BF00665501[Crossref]
  • [39] D. Platikanov, M. Nedyalkov and N. Rangelova: “Method for direct measurement of the film tension of black foam films at various capillary pressures”, Colloid Polym. Sci., Vol. 265, (1987), pp. 72–75. http://dx.doi.org/10.1007/BF01422667[Crossref]
  • [40] C. Sultanem: Films et bulles de proteins solubles: Structure, interactions et permeabilite au gaz, Thesis (PhD), Paris XI, Orsay, France, 2004.
  • [41] J. van Steveninck, J.P.J. Boegheim and T.M.A.R. Dubbelman: “The influence of cupric ions on porphyrin-induced photodynamic membrane damage in human red blood cells”, Biochim. Biophys. Acta, Vol. 821, (1985), p. 1–7. http://dx.doi.org/10.1016/0005-2736(85)90146-4[Crossref]
  • [42] M.A. Bos and T. Nylander: “Interaction between Beta-Lactoglobulin and Phospholipids at the Air/Water Interface”, Langmuir, Vol. 12, (1996), pp. 2791–2797. http://dx.doi.org/10.1021/la950640t[Crossref]
  • [43] M. Cornec, D. Cho and G. Narsimhan: “Adsorption Dynamics of α-Lactalbumin and α-Lactoglobulin at Air-Water Interfaces”, J. Colloid Interf. Sci., Vol. 214, (1999), pp. 129–142. http://dx.doi.org/10.1006/jcis.1999.6230[Crossref]
  • [44] N.M. Princen: “Contact angles and transition regions in soap films”, J. Phys. Chem., Vol. 72, (1968), pp. 3342–3345. http://dx.doi.org/10.1021/j100855a050[Crossref]
  • [45] O. Belorgey and J.-J. Benattar: “Structural properties of soap black films investigated by x-ray reflectivity”, Phys. Rev. Lett., Vol. 66, (1991), pp. 313–316. http://dx.doi.org/10.1103/PhysRevLett.66.313[Crossref]
  • [46] N.I. Rangelova, V.N. Izmailova, D.N. Platikanov, G.P. Yampolskaya and Z.D. Tulovskaya: “Free Black Films of Proteins: 3. Dynamic Hysteresis of the Contact Angle (Film-Bulk Liquid) and the Rheological Properties of Adsorption Layers”, Colloid J. USSR, Vol. 52, (1990), pp. 442–445.
  • [47] L.G. Cascao et al.: “A bike-wheel microcell for measurement of thin-film forces”, Colloids Surfaces A, Vol. 186, (2001), pp. 103–111. http://dx.doi.org/10.1016/S0927-7757(01)00488-5[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11532-007-0014-z
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.