Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 5 | 1 | 107-117
Tytuł artykułu

Characterization of superparamagnetic MgxZn1−x Fe2O4 powders

Treść / Zawartość
Warianty tytułu
Języki publikacji
Structural and magnetic properties of Mgx Zn1−x Fe2O4 powders have been studied with respect to the application for thermal cancer therapy (magnetic hyperthermia). Mgx Zn1−x Fe2O4 (x=0.1–0.5) powders with particle sizes between 5 and 8 nm were produced by citrate method. The X-ray diffraction patterns of the samples correspond to a spinel phase. The lattice constant and the volume of the elementary cell increase when x changes from 0.1 to 0.5. The FTIR-spectra ascertain the spinel phase formation. The Mossbauer studies reveal the presence of extremely small particles, which undergo superparamagnetic relaxation at room temperature. The core-shell model has been applied to explain quadruple doublets. The quadruple splitting at “shells” is bigger than those at “cores” whereas the isomer shifts remain close. Magnetic studies confirm the presence of extremely small particles that behave as superparamagnetic ones. [...]
Słowa kluczowe

Opis fizyczny
  • Department Technology of Silicates, University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria,
  • Department Technology of Silicates, University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria
  • Department Technology of Silicates, University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria
  • Institute of Catalysis, Bulgarian Academy of Science, Sofia, 1113, Bulgaria
  • Institute of Catalysis, Bulgarian Academy of Science, Sofia, 1113, Bulgaria
  • Department of Condensed Matter Physics, Faculty of Physics, Sofia University, Sofia, 1164, Bulgaria
  • [1] A. Jordan, R. Scholz, P. Wust, H. Fähling, and R. Felix: “Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles”, J. Magn. Magn. Mater., Vol. 201, (1999), pp. 413–419.[Crossref]
  • [2] A. Jordan, R. Sholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch and R. Felix: “Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia”, J. Magn. Magn. Mater., Vol. 225, (2001), pp. 118–126.[Crossref]
  • [3] R. Hergt, W. Andra, C. G. d’Ambly, I. Hilger, W. A. Kaiser, U. Richter and H.-G. Schmidt: “Physical limits of hyperthermia using magnetite fine particles”, IEEE T. Magn., Vol. 34, (1998), pp. 3745–3754.[Crossref]
  • [4] M. Babinkova, E. Sustekova, and P. Babinec: “Heating of superparamagnetic colloid in high-frequency magnetic field: Implications for electromagnetic hyperthermia”, Czech J. Phys., Vol. 50, (2000), pp. 979–982.[Crossref]
  • [5] H. Hofmann, A. Petri, M. Chastellain and M. Hofmann: “Superparamagnetic nanoparticle preparation for medical application”, Eur. Cell. Mater., Vol. 2, (2001), pp. 29–30.
  • [6] C.C. Berry and A.S.G. Curtis: “Fictionalization of magnetic nanoparticles for application in biomedicine”, J. Phys. D: Appl. Phys., Vol. 36, (2003), pp. R198–R206.[Crossref]
  • [7] Yong-Gang Lv, Zhong-Shan Deng, Jing Liu: “3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field”, IEEE T. Nano. Biosci., Vol. 4, (2005), pp. 284–294.
  • [8] N.A. Brusentsov, L.V. Nikitin, T.N. Brusentsova, A.A. Kuznetzov, F.S. Bayburtskiy, L.I. Shumakov and N.Y. Jurchenko: “Magnetic fluid hyperthermia of the mouse experimental tumor”, J. Magn. Magn. Mater., Vol. 252, (2002), pp. 378–380.[Crossref]
  • [9] L.A. Harris: “Polymer stabilized magnetite nanoparticles and poly(propylene oxide) modified styrene-dimethacrylate networks”, Thesis (Ph.D.), University of Virginia, 2002.
  • [10] J. Cattergee, Y. Haik and C.J. Chen: “Synthesis of polyethylene magnetic nanoparticles”, Eur. Cell. Mater〉, Vol. 3, (2002), pp. 98–101.
  • [11] Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonsales-Carreño and C.J. Serna: “The preparation of magnetic nanoparticles for applications in biomedicine”, J. Phys. D: Appl. Phys., Vol. 36, (2003), pp. R182–R197.[Crossref]
  • [12] R. Müler, R. Hergt, H. Steinmetz, M. Zeisberger and W. Gawalek: “Preparation of magnetic nanoparticles with large specific loss power for heating applications”, In: Proceedings of the 10 th International Conference on Magnetic Fluids, Guarujá-Brazil, 2004.
  • [13] R. Hergt, R. Hiergeist, I. Hilger, W. A. Kaiser, Y. Lapatnikov, S. Margel and U. Richter: “Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia”, J. Magn. Magn. Mater., Vol. 270, (2004), pp. 345–357.[Crossref]
  • [14] J. Giri, S. Dasgupta, D. Datta and D. Bahadur: “Investigation on Tc tuned nanoparticles of magnetic oxides for hyperthermia applications”, Biomed. Mater. Eng., Vol. 13, (2003), pp. 387–399.
  • [15] H. Yin and G.M. Chow: “Study on magnetic nanoparticles-biodegradable polymer composite”, In: Proceedings of the International conference on Nanotechnology and Nanomaterials, Crete, Greece, 2003.
  • [16] Y. Huang, J.-H. Kim, S.-I. Park, H. Shao and C.-O. Kim: “Preparation of nanometric Cux Fe1−x OFe2O3 for treatment of tumor”, J. Appl. Phys., Vol. 93, (2003), pp. 8444–8446[Crossref]
  • [17] B.M. Lacava, A.F. Bakuzis, K.S. Neto, L.P. Silva, R.B. Azevedo and P.C. Morais: “Characterization of cobalt-ferrite based magnetic fluids prepared at different conditions”, In: Proceedings of the 10 th International Conference on Magnetic Fluids, Guarujá-Brazil, 2004.
  • [18] J. Giri, T. Sriharsha, S. Asthana, T. K. Gundu Rao, A. K. Nigam and D. Bahadur: “Synthesis of capped nanosized Mn1−x Znx Fe2O4 (0≤ x≤ 0.8) by microwave refluxing for biomedical applications”, J. Magn. Magn. Mater., Vol. 293, (2005), pp. 55–61.
  • [19] A. Feustel, R. Wennrich and B. Schmidt: “Serum Zn-levels in prostatic cancer”, Urol. Res., Vol. 17, (1989), pp. 41–42.
  • [20] I. Yucel, F. Arpaci, A. Ozet, B. Doner, T. Karayalanoglu, A. Sayar and O. Berk “Serum copper and zinc levels and copper/zinc ratio in patients with breast cancer”, Biol. Trace. Elem. Res., Vol. 40, (1994), pp. 31–38. [Crossref]
  • [21] J.-Y. Liang, Y.-Y. Lin, J. Zou, R.B. Franklin, L.C. Costello and P. Feng: “Inhibitory effect of zinc on human prostatic carcinoma cell growth”, The Prostate, Vol. 40, (1999), pp. 200–207.<200::AID-PROS8>3.0.CO;2-3[Crossref]
  • [22] L.Y. Fong, Vu T. Nguyen and J.L. Farber: “Esophagael cancer prevention in zinc-deficient rats: rapid induction of apoptosis by replenishing zinc”, J. Natl. Cancer Inst., Vol. 93, (2001), pp. 1525–1533[Crossref]
  • [23] A.S. Prasad and O. Kucuk: “Zinc in cancer prevention”, Cancer Metastasis Rev., Vol. 21, (2002), pp. 291–295.[Crossref]
  • [24] M.S. Seeling: Adjuvant nutrition in cancer treatment, P. Quillian and R.M. Williams (Eds.), Publ Cancer Treat Res Fdn, 1993.
  • [25] J. Durlach, M. Bara, A. Guiet-Bara and P. Collery: “Relationship between magnesium, cancer and carcinogenic or anticancer metals”, Anticancer Res., Vol. 6, (1986), pp. 1353–1361.
  • [26] US Pat. 5 614 652, 1997.
  • [27] C. Marcilly, P. Courty and B. Delmon: “Preparation of highly dispersed mixed oxides and oxide solid solutions by pyrolysis of amorphous organic precursors”, J. Am. Ceram. Soc., Vol. 53, (1970), pp. 56–57.[Crossref]
  • [28] B.P. Ladgaonkar, C.B. Kolekar and A.S. Vaingankar: “Infrared absorption spectrd-scopic study of Nd3+ substituted Zn-Mg ferrites”, Bull. Mate. Sci., Vol. 25, (2002), pp. 351–354.[Crossref]
  • [29] B.K. Nath, P.K. Chacrabarti, U. Kumar, P.K. Mukhopadhhyay and D. Das: “Mössbauer, X-ray diffraction and AC susceptibility studies on nanoparticles of zinc substituted magnesium ferrite”, Eur. Phys. J. B, Vol. 39, (2004), pp. 417–425.[Crossref]
  • [30] R.N. Panda, N.S. Gajbhiye and G. Balaji: “Magnetic properties of interacting single domain Fe3O4 particles”, J. Alloy Compd., Vol. 326, (2001), pp. 50–53.[Crossref]
  • [31] S. Morup: “Magnetic hyperfine spliting in mössbauer spectra of microcrystals”, J. Magn. Magn. Mater., Vol. 37, (1983), pp. 39–50.[Crossref]
  • [32] S. Morup and H. Topsoe: “Magnetic and electronic properties of microcrystals of Fe3O4”, J. Magn. Magn. Mater., Vol. 31–34, (1983), pp. 953–954[Crossref]
  • [33] A.M. van der Kraan: “Mössbauer effect studies of surface ions of ultrafine α-Fe2O3 particles”, Phys. Stat. Sol. A, Vol. 18, (1973), pp. 215–226.[Crossref]
  • [34] J.W. Niemantsverdriet, A. Van der Kraan, W.N. Delgass and M.A. Vannice: “Small-particle effects in Mössbauer spectra of carbon-supported iron catalyst“, J. Phys. Chem., Vol. 89, (1985), pp. 67–72.[Crossref]
  • [35] X. Li and C. Kutal: “Synthesis and characterization of superparamagnetic Cox Fe3−x O4 nanoparticles“, J. Alloy Compd., Vol. 349, (2003), pp. 264–268.[Crossref]
  • [36] B.D. Cullity: Introduction to magnetic materials, Addison-Wesley Pub. Co., Reading, Massachusetts, 1972.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.