PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2007 | 5 | 1 | 316-329
Tytuł artykułu

Electrospray ionization mass spectrometric study of mercury complexes of N-heterocyclic carbenes derived from 1,2,4-triazolium salt precursors

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By mixing 1,2,4-triazolium salts (precursors of N-heterocyclic carbenes 1–6) with mercury acetate, a number of complexes have been obtained under electrospray ionization condition. Carbenes 1 and 2 contain one carbene center; therefore, they are able to bond only one mercury cation. Carbenes 3–5 contain two carbene centers; therefore, they can bond two mercury cations. Mercury complexes of 1–5 always contain an acetate anion attached to a mercury cation. Carbene 6 also contains two carbene centers; however, its structure allows formation of a complex containing mercury bonded simultaneously to both centers, therefore, the complex that does not contain an acetate anion. The MS/MS spectra taken for complexes of carbenes 1–5 have shown formation of a cation corresponding to N1 substituent (adamantyl or benzyl), and those of complexes of carbenes 3–5 (doubly charged ions) have also shown the respective complementary partner ions. Mercury complex of 2 has yielded some other interesting fragmentation pathways, e.g. a loss of the HHgOOCCH3 molecule. The fragmentation pathway of the mercury complexes of 6 was found to be complicated.
Wydawca
Czasopismo
Rocznik
Tom
5
Numer
1
Strony
316-329
Opis fizyczny
Daty
wydano
2007-03-01
online
2007-03-01
Twórcy
  • Faculty of Chemistry, Adam Mickiewicz University, 60-780, Poznań, Poland
  • Faculty of Chemistry, Adam Mickiewicz University, 60-780, Poznań, Poland
  • Department of Chemistry, Humboldt University Berlin, 12489, Berlin, Germany
  • Department of Chemistry, Humboldt University Berlin, 12489, Berlin, Germany
  • Department of Chemistry, Humboldt University Berlin, 12489, Berlin, Germany
Bibliografia
  • [1] W.A. Herrmann and C. Köcher: “N-Heterocyclic carbenes”, Angew. Chem. Int. Ed. Engl., Vol. 36, (1997), pp. 2162–2187. http://dx.doi.org/10.1002/anie.199721621[Crossref]
  • [2] T. Weskamp, V.P.W. Böhm and W.A. Herrmann: “N-Heterocyclic carbenes: state of the art in transition-metal-complex synthesis”, J. Organomet. Chem., Vol. 600, (2000), pp. 12–22. http://dx.doi.org/10.1016/S0022-328X(00)00035-8[Crossref]
  • [3] D. Bourissou, O. Guerret, F.P. Gabbaï and G. Bertrand: “Stable carbenes”, Chem. Rev., Vol. 100, (2000), pp. 39–91. http://dx.doi.org/10.1021/cr940472u[Crossref]
  • [4] C.M. Crudden and D.P. Allen: “Stability and reactivity of N-heterocyclic carbene complexes”, Coord. Chem. Rev., Vol. 248, (2004), pp. 2247–2273. http://dx.doi.org/10.1016/j.ccr.2004.05.013[Crossref]
  • [5] C.-X. Bai, W.-Z. Zhang, R. He, X.-B. Lu and Z.-O. Zhang: “Highly active phosphine-free carbene ruthenium catalyst for cross-metathesis of acrylonitrile with functionalized olefins”, Tetrahedron Lett., Vol. 46, (2005), pp. 7225–7228. http://dx.doi.org/10.1016/j.tetlet.2005.08.062[Crossref]
  • [6] R. Castarlenas, M.A. Esteruelas and E. Oñate: “N-heterocyclic carbene-osmium complexes for olefin metathesis reactions”, Organometallics, Vol. 24, (2005), pp. 4343–4346. http://dx.doi.org/10.1021/om050569e[Crossref]
  • [7] K. Weigl, K. Köhler, S. Dechert and F. Meyer: “Synthesis and structure of N-heterocyclic carbene complexes with tethered olefinic groups: Application of the ruthenium catalyst in olefin metathesis”, Organometallics, Vol. 24, (2005), pp. 4049–4056. http://dx.doi.org/10.1021/om0503242[Crossref]
  • [8] F. Hanasaka, K.-I. Fujita and R. Yamaguchi: “Synthesis of new cationic Cp*Ir N-heterocyclic carbene complexes and their high catalytic activities in the oppenauertype oxidation of primary and secondary alcohols”, Organometallics, Vol. 24, (2005), pp. 3422–3433. http://dx.doi.org/10.1021/om0503545[Crossref]
  • [9] C. Köcher and W.A. Herrmann: “Heterocyclic carbenes. One-pot synthesis of rhodium and iridium carbene complexes”, J. Organomet. Chem., Vol. 532, (1997), pp. 261–265. http://dx.doi.org/10.1016/S0022-328X(96)06732-0[Crossref]
  • [10] D. Enders, H. Gielen, J. Runsink, K. Breuer, S. Brode and K. Boehn: “Diastereoselective synthesis of chiral (triazolinylidene)rhodium complexes containing an axis of chirality”, Eur. J. Inorg. Chem., (1998), pp. 913–919.
  • [11] G. Bertrand, E. Díez-Barra, J. Fernández-Baeza, H. Gornitzka, A. Moreno, A. Otero, R.I. Rodríguez-Curiel and J. Tejeda: “Synthesis, characterization and dynamic behavior of mono-and dinuclear palladium(II) carbene complexes derived from 1,1′-methylenebis(4-alkyl-1,2,4-triazolium) diiodides”, Eur. J. Inorg. Chem. (1999), pp. 1965–1971.
  • [12] T.M. Trnka, J.P. Morgan, M.S. Sanford, T.E. Wilhelm, M. Scholl, T.-L. Choi, S. Ding, M.W. Day and R.H. Grubbs: “Synthesis and activity of ruthenium alkylidene complexes coordinated with phosphine and N-heterocyclic carbene ligands”, J. Am. Chem. Soc., Vol. 125, (2003), pp. 2546–2558. http://dx.doi.org/10.1021/ja021146w[Crossref]
  • [13] C. Buron, L. Stelzig, O. Gurret, H. Gornitzka, V. Romanenko ad G. Bertrand: “Synthesis and structure of 1,2,4-triazol-2-ium-5-ylidene complexes of Hg(II), Pd(II), Ni(II), Ni(0), Rh(I) and Ir(I)”, J. Organomet. Chem., Vol. 664, (2002), pp. 70–76. http://dx.doi.org/10.1016/S0022-328X(02)01924-1
  • [14] W. Henderson and J.S. McIndoe: Mass Spectrometry of Inorganic, Coordination and Organometallic Compounds, John Wiley & Sons, Ltd. 2005.
  • [15] T. Weilandt, E. Gräff, J.F. Schneider, A.W. Koch, F.A. Zschoche, K.H. Dötz and C.A. Schalley: “Mass spectrometric detection and fragmentation patterns of synthetically useful chromium and tungsten carbene complexes”, Organometallics, Vol. 24, (2005), pp. 3671–3678. http://dx.doi.org/10.1021/om050099o[Crossref]
  • [16] W.D. Wulff, K.A. Korthals, R. Martínez-Álvarez, M. Gómez-Gallego, I. Fernández and M.A. Sierra: “Study of the ESI-mass spectrometry ionization mechanism of fischer carbene complexes”, J. Org. Chem., Vol. 70, (2005), pp. 5269–5277. http://dx.doi.org/10.1021/jo050553y[Crossref]
  • [17] R. Martínez-Álvarez, M. Gómez-Gallego, I. Fernández, M.J. Mancheño and M.A. Sierra: “ESI mass spectrometry as a tool for the study of electron transfer in nonconventional media: the case of bi-and polymetallic carbene complexes”, Organometallics, Vol. 23, (2004), pp. 4647–4654. http://dx.doi.org/10.1021/om049772k[Crossref]
  • [18] M.A. Sierra, M. Gómez-Gallego, M.J. Mancheño, R. Martínez-Álvarez, P. Ramírez-López, N. Kayali and A. González: “Electrospray mass spectra of group 6 (Fischer) carbenes in the presence of electron-donor compounds”, J. Mass Spectrom., Vol. 38, (2003), pp. 151–156. http://dx.doi.org/10.1002/jms.424[Crossref]
  • [19] M.A.O. Volland, C. Adlhart, C.A. Kiener, P. Chen and P. Hofmann: “Catalyst screening by electrospray ionization tandem mass spectrometry: Hofmann carbenes for olefin metathesis”, Chem. Eur. J., Vol. 7, (2001), pp. 4621–4632. http://dx.doi.org/10.1002/1521-3765(20011105)7:21<4621::AID-CHEM4621>3.0.CO;2-C[Crossref]
  • [20] N. Lyapchenko, R. Frański, G. Schroeder, T. Kozik, O.P. Shvaika, A.V. Kiselyov and N.I. Korotkikh: “Electrospray ionization and liquid secondary ion mass spectrometric study of N-hetorocyclic carbenes and their 1,2,4-triazolium salt precursors”, Int. J. Mass Spectrom., Vol. 228, (2003), pp. 61–68. http://dx.doi.org/10.1016/S1387-3806(03)00198-2[Crossref]
  • [21] K.-M. Lee, J.C.C. Chen and I.J.B. Lin: “Helical mono and dinuclear mercury(II) N-heterocyclic carbene complexes”, J. Organomet. Chem., Vol. 617–818, (2001), pp. 364–375. http://dx.doi.org/10.1016/S0022-328X(00)00617-3[Crossref]
  • [22] B. Bildstein, M. Malaun, H. Kopacka, K.-H. Ongania and K. Wurst: “Imidazoline-2-ylidene metal complexes with pendant ferrocenyl substituents”, J. Organomet. Chem., Vol. 552, (1998), pp. 45–61. http://dx.doi.org/10.1016/S0022-328X(97)00464-6[Crossref]
  • [23] A.J. Arduengo, R.L. Harlow, W.J. Marshall and T.K. Prakasha: “Investigation of a mercury(II) carbene complex: bis(1,3-dimethylimidazol-2-ylidene) mercury chloride”, Heteroatom Chem., Vol. 7, (1996), pp. 421–426. http://dx.doi.org/10.1002/(SICI)1098-1071(199611)7:6<421::AID-HC4>3.0.CO;2-B[Crossref]
  • [24] W. Urbaniak, R. Frański and B. Gierczyk: “Mass spectrometric investigation of tautomers of N-substituted 4-iminopentan-2-ones in the gas phase”, Pol. J. Chem., Vol. 75, (2001), pp. 429–441.
  • [25] L.S. Riter, D.F. Fraley and R.G. Cooks: “Denitration of nitroaromatic compounds by arylnitrile radical cations”, J. Am. Soc. Mass Spectrom., Vol. 11, (2000), pp. 33–39. http://dx.doi.org/10.1016/S1044-0305(99)00114-2[Crossref]
  • [26] R. Frański, M. Zalas, S. Beck, A. Springer and M. Linscheid: “Mass spectrometric decompositions of N-arylbenzonitrilium ions”, Int. J. Mass Spectrom., Vol. 242, (2005), pp. 1–4. http://dx.doi.org/10.1016/j.ijms.2004.11.005[Crossref]
  • [27] M.K. Morigaki, L.C. Machado, E.M. Da Silva, C. Larica, B. Armando Filho and G.H.M. Dias: “Preparation and mössbauer studies of iron-mercury mixed isocyanide-carbonyl complexes”, Trans. Metal Chem., Vol. 24, (1999), pp. 5–7. http://dx.doi.org/10.1023/A:1006924105568[Crossref]
  • [28] T. Tanase, E. Goto, H. Takenaka, T. Horiuchi, Y. Yamamoto, J. Kuwabara and K. Osakada: “Cage-type hexanuclear platinum(O) clusters with diphosphine and isocyanide ligands encapsulating two mercury(O) atoms”, Organometallics, Vol. 24, (2005), pp. 234–244. http://dx.doi.org/10.1021/om049251x[Crossref]
  • [29] R. Puk and J.K. Weber: “Determination of mercury(II), monomethylmercury cation, dimethylmercury and diethylmercury by hydride generation, cryogenic trapping and atomic absorption spectrometric detection”, Anal. Chim. Acta, Vol. 292, (1994), pp. 175–183. http://dx.doi.org/10.1016/0003-2670(94)00066-2[Crossref]
  • [30] T.M. Greene, L. Andrews and A.J. Downs: “The reaction of zinc, cadmium, and mercury atoms with methane: Infrared spectra of the matrix-isolated methylmetal hydrides”, J. Am. Chem. Soc., Vol. 117, (1995), pp. 8180–8187. http://dx.doi.org/10.1021/ja00136a015[Crossref]
  • [31] A.B. Alekseyev, H.-P. Liebermann, R.J. Buenker and G. Hirsch: “Spin-orbit configuration interaction study of potential energy curves and transition probabilities of the mercury hydride molecule and tests of relativistic effective core potentials for Hg, Hg+, and Hg2+”, J. Chem. Phys., Vol. 104, (1996), pp. 4672–4684. http://dx.doi.org/10.1063/1.471162[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11532-006-0050-0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.