Nowa wersja platformy jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 5 | 1 | 341-348
Tytuł artykułu

Studies of dehydration kinetics of Li2SO4·H2O by the master plots method

Treść / Zawartość
Warianty tytułu
Języki publikacji
The kinetics of Li2SO4·H2O dehydration in static air atmosphere was studied on the basis of nonisothermal measurements by differential scanning calorimetry. Dehydration data were subjected to an integral composite procedure, which includes an isoconversional method, a master plots method and a model-fitting method. Avrami-Erofeev equation was found to describe all the experimental data in the range of conversion degrees from 0.1 to 0.9. The determined activation energy equals 65.45 kJ·mol−1 with standard deviation ±0.47 kJ·mol−1. The estimated value of parameter m in Avrami-Erofeev equation is 2.15 with standard deviation ±0.11. Also, the obtained pre-exponential factor is 7.79×105 s−1 with standard deviation ±0.55×105 s−1. The results show that the present integral composite procedure gives self-consistent kinetic parameters.

Opis fizyczny
  • Hubei Key Laboratory for Catalysis & Material Science, College of Chemistry & Material Science, South-Central University for Nationalities, Wuhan, 430074, China,
  • Hubei Key Laboratory for Catalysis & Material Science, College of Chemistry & Material Science, South-Central University for Nationalities, Wuhan, 430074, China,
  • [1] F.J. Gotor, M. Macias, A. Ortega and J.M. Criado: “Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples”, Phys. Chem. Minerals, Vol. 27, (2000), pp. 495–503.[Crossref]
  • [2] D. Peterson and J. Winnick: “A hydrogen-sulfide fuel-cell using a proton-conducting solid-electrolyte”, J. Electrochem. Soc., Vol. 143(3), (1996), pp. 55–56.[Crossref]
  • [3] R. Sabbah, An Xu-wu, J.S. Chickos, M.L. Planas Leitao, M.V. Roux and L.A. Torres: “Reference materials for calorimetry and differential thermal analysis”, Thermochim. Acta, Vol. 331, (1999), pp. 93–204.[Crossref]
  • [4] N.A. Simakova, N.Z. Lyakhov and N.A. Rudina: “Thermal dehydration of lithium sulfate monohydrate. The reaction reversibility and the solid product morphology”, Thermochim. Acta, Vol. 256, (1995), pp. 381–389.[Crossref]
  • [5] A.N. Modestov, P.V. Poplaukhin and N.Z. Lyakhov: “Dehydration kinetics of lithium sulfate monohydrate single crystals”, J. Therm. Anal. Cal., Vol. 65, (2001), pp. 121–130.[Crossref]
  • [6] B.V. Lvov and V.L. Ugolkov: “The self-cooling effect in the process of dehydration of Li2SO4·H2O, CaSO4·2H2O and CuSO4·5H2O in vacuum”, J. Therm. Anal. Cal., Vol. 74, (2003), pp. 697–708.[Crossref]
  • [7] N. Koga and H. Tanaka: “Kinetics and mechanisms of the thermal dehydration of Li2SO4·H2O”, J. Phys. Chem., Vol. 93, (1989), pp. 7793–7798.[Crossref]
  • [8] W. Kezhong, Z. Jianjun, G. Yanrui and L. Xiaodi: “Determination of nonisothermal kinetic parameters of lithium sulfate monohydrate”, Chin. J. Rare Metals, Vol. 25, (2001), pp. 389–391.
  • [9] Y. Seto, H. Sato and Y. Masuda: “Effect of water vapor pressure on thermal dehydration of lithium sulfate monohydrate”, Thermochim. Acta, Vol. 388, (2002), pp. 21–25.[Crossref]
  • [10] Z. Jianjun, B. Jihai, Z. Xiufang, Z. Xue and W. Kezhong: “Non-isothermal kinetics of the dehydration process for lithium sulfate monohydrate in solid state”, Chin. J. Anal. Chem., Vol. 31, (2003), pp. 726–730.
  • [11] G.J.T. Fernandes, A.S. Araújo, J.V.J. Fernandes and C. Novák: “Model-free kinetics applied to regeneration of coked alumina”, J. Therm. Anal. Cal., Vol. 75, (2004), pp. 687–692.[Crossref]
  • [12] P. Šimon: “Isoconversional methods. Fundamentals, meaning and application”, J. Therm. Anal. Cal., Vol. 76, (2004), pp, 123–132.[Crossref]
  • [13] F.J. Gotor, J.M. Criado, J. Malek and N. Koga: “Kinetic analysis of solid-state reactions: The universality of master plots for analyzing isothermal and nonisothermal experiments”, J. Phys. Chem. A, Vol. 104, (2000), pp. 10777–10782.[Crossref]
  • [14] L.A. Perez-Maqueda, J.M. Criado, F.J. Gotorand and J. Malek: “Advantages of combined kinetic analysis of experimental data obtained under any heating profile”, J. Phys. Chem. A, Vol. 106, (2002), pp. 2862–2868.[Crossref]
  • [15] V. Mamleev, S. Bourbigot, M.L. Bras, S. Duquesne and J. Sestak: “Modeling of nonisothermal kinetics in thermogravimetry”, Phys. Chem. Chem. Phys., Vol. 2, (2000), pp. 4708–4716.[Crossref]
  • [16] T. Wanjun, L. Yuwen, Z. Hen and W. Cunxin: “New approximate formula for Arrhenius temperature integral”, Thermochim. Acta, Vol. 408, (2003), pp. 39–43.[Crossref]
  • [17] H. Tanaka: “Thermal analysis and kinetics of solid state reactions”, Thermochim. Acta, Vol. 267, (1995), pp. 29–44.[Crossref]
  • [18] T. Wanjun, L. Yuwen, Z. Hen, W. Zhiyong and W. Cunxin: “New temperature integral approximate formula for nonisothermal kinetic analysis”, J. Therm. Anal. Cal., Vol. 74, (2003), pp. 309–315.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.