Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 4 | 4 | 732-742
Tytuł artykułu

Hydrogen-bonded assembly and binding affinity of the multi-point acceptor and isophthalic acid

Treść / Zawartość
Warianty tytułu
Języki publikacji
Supermolecular complexes formed by oligophenyleneethynylene derivatives and isophthalic acid were studied using AM1 method to obtain binding energy. Electronic spectra and IR spectra of the complexes were calculated by INDO/CIS and AM1 methods based on AM1 geometries. Results indicated that the dimer could be formed by the monomers via hydrogen bonding because of the negative binding energy. Binding energy of the complexes was affected by electronegativity and steric effects of the substituents. The first UV absorptions and IR frequencies of N-H bonds of the complexes were both red-shifted compared with those of the monomers. The complexes could bind small molecules via hydrogen bonds, resulting in the change in UV absorptions and an increase in IR frequencies of N-H bonds.
Opis fizyczny
  • Department of Chemistry, Zhejiang University, Hangzhou, 310027, People’s Republic of China
  • Institute of Fine Chemicals, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
  • Department of Chemistry, Zhejiang University, Hangzhou, 310027, People’s Republic of China ,
  • Department of Chemistry, Zhejiang University, Hangzhou, 310027, People’s Republic of China
  • Department of Chemistry, Zhejiang University, Hangzhou, 310027, People’s Republic of China
  • [1] R.A. Koevoets, R.M. Versteegen, H. Kooijman, A.L. Spek, R.P. Sijbesma and E.W. Meijer: “Molecular recognition in a thermoplastic elastomer”, J. Am. Chem. Soc., Vol. 127, (2005), pp. 2999–3003.[Crossref]
  • [2] F.H. Beijer, H. Kooijman, A.L. Spek, R.P. Sijbesma and E.W. Meijer: “Self-Complementarity Achieved through Quadruple Hydrogen Bonding”, Angew. Chem. Int. Ed., Vol. 37, (1998), pp. 75–78.<75::AID-ANIE75>3.0.CO;2-R[Crossref]
  • [3] C. Schmuck and W. Wienand: “Self-Complementary Quadruple Hydrogen-Bonding Motifs as a Functional Principle: From Dimeric Supramolecules to Supramolecular Polymers”, Angew. Chem. Int. Ed., Vol. 40, (2001), pp. 4363–4369.<4363::AID-ANIE4363>3.0.CO;2-8[Crossref]
  • [4] C. Bielawski, Y.S. Chen, P. Zhang, P.J. Prest and J.S. Moore: “A modular approach to constructing multi-site receptors for isophthalic acid”, Chem. Commun, (1998), pp. 1313–1314. [Crossref]
  • [5] J. Dreyer: “Density functional theory simulations of two-dimensional infrared spectra for hydrogen-bonded acetic acid dimmers”, Int. J. Quantum. Chem., Vol. 104, (2005), pp. 782–793.[Crossref]
  • [6] M. Inouye, T. Miyake, M. Furusyo and H. Nakazumi: “Molecular recognition of beta-ribofuranosides by synthetic polypyridine-macrocyclic receptors”, J. Am. Chem. Soc., Vol. 117, (1995), pp. 12416–12425.[Crossref]
  • [7] J.R. Rush, S.L. Sandstrom, J. Yang, R. Davis, O. Prakash and P.W. Baures: “Intramolecular hydrogen bond strength and pKa determination of N,N′-disubstituted imidazole-4,5-dicarboxamides”, Org. Lett., Vol. 7, (2005), pp. 135–138.[Crossref]
  • [8] J. Bu, N.D. Lilienthal, J.E. Woods, C.E. Nohrden, K.T. Hoang, D. Truong and D.K. Smith: “Electrochemically controlled hydrogen bonding. Nitrobenzenes as simple redox-dependent receptors for arylureas”, J. Am. Chem. Soc., Vol. 127, (2005), pp. 6423–6429.[Crossref]
  • [9] R.A. Weatherhead-Kloster, H.D. Selby, W.B. Miller III and E.A. Mash: “Organic Crystal Engineering with 1,4-Piperazine-2,5-diones. 6. Studies of the Hydrogen-Bond Association of Cyclo[(2-methylamino-4,7-dimethoxyindan-2-carboxylic acid)(2-amino-4,7-dimethoxyindan-2-carboxylic acid)]”, J. Org. Chem., Vol. 70, (2005), pp. 8693–8702.[Crossref]
  • [10] M. Buck and M. Karplus: “Hydrogen bond energetics: a simulation and statistical analysis of N-methyl acetamide(NMA), water, and human lysozyme”, J. Phys. Chem. B., Vol. 105, (2001), pp. 11000–11015.[Crossref]
  • [11] E.A. Archer, H. Gong and M.J. Krische: “Hydrogen bonding in noncovalent synthesis: selectivity and the directed organization of molecular strands”, Tetrahedron, Vol. 57, (2001), pp. 1139–1159.[Crossref]
  • [12] T. Ossowski, H. Sulowskal, T. Karbowiak, D. Zarzeczanska, B. Gierczyk and G. Schroeder: “1H NMR and spectrophotometric study of alkaline metal ion complexes with N-dansyl aza-18-crown-6”, Cent. Eur. J. Chem., Vol. 4, (2006), pp. 13–28.[Crossref]
  • [13] S. Chen, Q. Teng and S. Wu: “Theoretical studies on the binding affinities of β-cyclodextrin to small molecules and monosaccharides”, Cent. Eur. J. Chem., Vol. 4, (2006), pp. 223–233.[Crossref]
  • [14] H. Jin, J. Feng, A. Ren, Z. Li, Z. Wang and X. Zhang: “Theoretical studies on the hydrogen bonding assemblies based on bispyrimidine and bis barbituric acid”, Acta Chimica Sinica, Vol. 58, (2000), pp. 194–198.
  • [15] S. Wu and Q. Teng: “Hydrogen bonding-mediated assembly of perelene dianhydride and pyridine derivatives”, Chinese J. Chem. Phys., Vol. 19, (2006), pp. 76–78.
  • [16] R. Glaser, H. Wu and M. Lewis: “Cytosine catalysis of nitrosative guanine deamination and interstrand cross-link formation”, J. Am. Chem. Soc., Vol. 127, (2005), pp. 7346–7358.[Crossref]
  • [17] L.Y. Qi, Q.W. Teng, S. Wu and Z.Z. Liu: “Study on molecular recognition of crown ethers to aniline and monosaccharides”, Chinese J. Struct. Chem., Vol. 24, (2005), pp. 537–540.
  • [18] M.A. Thompson and M.C. Zerner: “A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas viridis”, J. Am. Chem. Soc., Vol. 113, (1991), pp. 8210–8215.[Crossref]
  • [19] Q. Teng, S. Wu and Z. Zhu: “Theoretical studies on the structures and electronic spectra of C75B−”, Int. J. Quantum Chem., Vol. 91, (2003), pp. 39–45[Crossref]
  • [20] Q. Teng and S. Wu: “Electronic structures and spectra for triepoxides of fullerene C78O3”, Int. J. Quantum Chem., Vol. 104, (2005), pp. 278–281[Crossref]
  • [21] Q. Teng and S. Wu: “An INDO study on electronic structures and spectra of C79H2”, J. Mol. Stru.: THEOCHEM, Vol. 719, (2005), pp. 47–51.[Crossref]
  • [22] Q. Teng and S. Wu: “Stability and electronic spectroscopy of isomers for C74Si2”, J. Mol. Stru.: THEOCHEM, Vol. 756, (2005), pp. 103–107.[Crossref]
  • [23] L. Zhu, Q. Teng and S. Wu: “Study on UV, IR and NMR Spectra of Double Hydrogen-bonded Complexes”, Chinese J. Struct. Chem. Vol. 25, (2006), pp. 143–148.
  • [24] L. Zhu, Q. Teng and S. Wu: “Studies on Hydrogen-Bonding Complexes of Melamine and Cyclotrione”, Chem. J. Chinese Universities, Vol. 27, (2006), pp. 680–683.
  • [25] M.J. Frisch, G.W. Trucks, H.B. Schlegel et al. Gaussian 03, Revision B. 01, Gaussian Inc., Pittsburgh, PA, 2003.
  • [26] X. Zhou, Z. Zhou, H. Fu, Y. Shi and H. Zhang: “Density functional complete study of hydrogen bonding between the dichlorine monoxide and the hydroxyl radical (Cl2O $ HO)”, J. Mol. Stru.: THEOCHEM, Vol. Vol. 7(14), (2005), pp. 7–12.[Crossref]
  • [27] D.M. Du, A.P. Fu and Z.Y. Zhou: “Theoretical study of the rotation barrier of hydrogen peroxide in hydrogen bonded structure of HOOH-H2O complexes in gas and solution phase”, J. Mol. Stru.: THEOCHEM, Vol. Vol. 7(17), (2005), pp. 127–132.[Crossref]
  • [28] Y. Morita, T. Murata, K. Fukui, S. Yamada, K. Sato, D. Shiomi, T. Takui, H. Kitagawa, H. Yamochi, G. Saito and K. Nakasuji: “Hydrogen-bonded networks in organic conductors: crystal structures and electronic properties of charge-transfer salts of tetracyanoquinodimethane with 4,4/c-biimidazolium having multiprotonated states”, J. Org. Chem. Vol. 70, (2005), pp. 2739–2744.[Crossref]
  • [29] E.E. Fileti and S. Canuto: “Calculated infrared spectra of hydrogen-bonded methanol-water, water-methanol, and methanol-methanol complexes”, Int. J. Quantum Chem., Vol. 104, (2005), pp. 808–815.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.