Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 4 | 4 | 723-731
Tytuł artykułu

Synthesis and electronic properties of pentacene derivatives as promising n-type semiconductor candidates

Treść / Zawartość
Warianty tytułu
Języki publikacji
Two pentacene derivatives 1 and 2 were synthesized from the Diels-Alder reactions of furan derivatives with 1,4-benzoquinone. They were characterized by the methods of 1H - nuclear magnetic resonance spectroscopy (1H-NMR), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), ultraviolet and visible spectrophotometry (UV-VIS), photoluminescence (PL) spectrometry and cyclic voltammetry (CV). The energy gaps of 1 and 2, taken directly from spectroscopic measurements, are broad as 2.72 and 2.46 eV, leading to blue and greenish blue photoluminescence, respectively. The LUMO and HOMO energy levels are −2.77 and −5.49 eV for 1, and −2.91 and −5.37 eV for 2, respectively. The low energy levels make both 1 and 2 good air-stabilities and promising n-type semiconductor candidates for use in organic electronics.

Opis fizyczny
  • [1] A.R. Brown, D.M. Leeuw, E.E. Having et al.: “Field-effect transistors made from solution-processed organic semiconductors”, Synth. Met., Vol. 68(1), (1994), pp. 65–70.[Crossref]
  • [2] J.G. Laquindanum, H.E. Katz, A. Dodabalapur et al.: “n-Channel organic transistor materials based on naphthalene frameworks”, J. Am. Chem. Soc., Vol. 118, (1996), pp. 11331–11332.[Crossref]
  • [3] H.E. Katz, J. Johnson, A.J. Lovinger et al.: “Naphthalenetetracarboxylic diimide-Based n-channel transistor semiconductors: structural variation and thiol-enhanced gold contacts”, J. Am. Chem. Soc., Vol. 122, (2000), pp. 7787–7792.[Crossref]
  • [4] X.L. Chen, Z. Bao, B. Batlogg et al.: “Ion-modulated ambipolar electrical conduction in thin-film transistors based on amorphous conjugated polymers”, Appl. Phys. Lett., Vol. 78(2), (2001), pp. 228–230.[Crossref]
  • [5] A. Facchetti, M. Mushrush, H.E. Katz et al.: “n-Type building blocks for organic electronics: a homologous family of fluorocarbon-substituted thiophene oligomers with carrier mobility”, Adv. Mater., Vol. 15(1), (2003), pp. 33–38.[Crossref]
  • [6] M. Pope and C.E. Swenberg: Electronic Process in Organic Crystals and Polymers, Oxford University Press, New York, 1999.
  • [7] G. Horowitz, D. Fichou, A. Yassar et al.: “Molecular order in organic-based field-effect transistors”, Synth. Met., Vol. 81(2–3), (1992), pp. 163–171.
  • [8] O. Jurchescu, J. Baas and T. Palstra: “Effect of impurities on the mobility of single crystal pentacene” Appl. Phys. Lett., Vol. 84(16), (2004), pp. 3061–3063.[Crossref]
  • [9] J. Puigdollers, C. Voz, A. Orpella et al.: “Pentacene thin-film transistors with polymeric gate dieletric”, Org. Electron., Vol. 5(1–3), (2004), pp. 67–71.[Crossref]
  • [10] A. Afzali, C. Dimtrakopoulis and T. Breen: “High-Performance, Solution-Processed Organic Thin Film Transistors from a Novel Pentacene Precursor”, J. Am. Chem. Soc., Vol. 124, (2002), pp. 8812–8813.[Crossref]
  • [11] H. Klauk, M. Halik, U. Zschieschang et al.: “High-mobility polymer gate dielectric pentacene thin film transistors”, J. Appl. Phys., Vol. 92(9), (2002), pp. 5259–5263.[Crossref]
  • [12] P. Baude, D. Ender, M. Haase et al.: “Pentacene-based radio-frequency identification circuitry”, Appl. Phys. Lett., Vol. 82(22), (2003), pp. 3964–3966.[Crossref]
  • [13] T.H. Peter and K. Mullen: “A soluble pentacene precursor: synthesis, solid-state conversion into pentacene and application in a field-effect transistor”, Adv. Mater., Vol. 11(6), (1999), pp. 480–483.<480::AID-ADMA480>3.0.CO;2-U[Crossref]
  • [14] A. Afzali, C.D. Dimitrakopoulos and T.O. Graham: “Photosensitive pentacene precursor: synthesis, photothermal patterning, and application in thin-film transistors”, Adv. Mater., Vol. 15(24), (2003), pp. 2066–2069.[Crossref]
  • [15] S.H. Chan, C.Y. Yick and H.N. Wong: “5,6-bis(trimethylsily)benzo[c]furan: an isolable versatile building block for linear polycyclic armomatic compounds”, Tetrahedron, Vol. 58(46), (2002), pp. 9413–9422.[Crossref]
  • [16] H. Bock H. Alt: “d-Orbital effects in silicon-substituted π-electron systems. XXIV. Charge-transfer studies of silyl-and alkylbenzenes”, J. Am. Chem. Soc., Vol. 92, (1970), pp. 1569–1576.[Crossref]
  • [17] D.N. Gupta, P. Hodge and N. Khan: “Chemistry of quinines. Part 7. Synthesis of anthracyclinone analogues via Diels-Alder reactions of 1,4-anthraquinones”, J. Chem. Soc., Perkin Trans. 1, (1981), pp. 689–695.
  • [18] H. Bock, M. Ansari, N. Nagel et al.: “Interactions in crystal. LXXIII. The structures of 1,2,4,5-tetrakis(trimethylsily)benzene and of its solvent-separated radical anion salt [Na+ (H3COCH2CH2OCH3)3][((H3C)3Si)4H2C 6−]”, J. Organomet. Chem., Vol. 499, (1995), pp. 63–71.[Crossref]
  • [19] J. Pommerene, H. Vestweber, W. Guss et al.: “Efficient two layer leds on a polymer blend basis”, Adv. Mater., Vol. 7(6), (1995), pp. 551–554.[Crossref]
  • [20] Y. Sakamoto, T. Suzuki, M. Kobayashi et al.: “Perfluoropentacene: High-Performance p-n Junctions and Complementary Circuits with Pentacene”, J. Am. Chem. Soc., Vol. 126, (2004), pp. 8138–8140.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.