Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 4 | 3 | 543-564
Tytuł artykułu

Chemometrics in the assessment of the sustainable development rule implementation

Treść / Zawartość
Warianty tytułu
Języki publikacji
The sustainable development rule implementation is tested by the application of chemometrics in the field of environmental pollution. A data set consisting of Cd, Pb, Cr, Zn, Cu, Mn, Ni, and Fe content in bottom sediment samples collected in the Odra River (Germany/Poland) is treated using cluster analysis (CA), principal component analysis (PCA), and source apportionment techniques. Cluster analysis clearly shows that pollution on the German bank is higher than on the Polish bank. Two latent factors extracted by PCA explain over 88 % of the total variance of the system, allowing identification of the dominant “semi-natural” and “anthropogenic” pollution sources in the river ecosystem. The complexity of the system is proved by MLR analysis of the absolute principal component scores (APCS). The apportioning clearly shows that Cd, Pb, Cr, Zn and Cu participate in an “anthropogenic” source profile, whereas Fe and Mn are “semi-natural”. Multiple regression analysis indicates that for particular elements not described by the model, the amounts vary from 4.2 % (Mn) to 13.1 % (Cr). The element Ni participates to some extent to each source and, in this way, is neither pure “semi-natural” nor pure “anthropogenic”. Apportioning indicates that the whole heavy metal pollution in the investigated river reach is 12510.45 mg·kg−1. The contribution of pollutants originating from “anthropogenic sources” is 9.04 % and from “semi-natural” sources is 86.53 %.

Opis fizyczny
  • Biology and Environmental Protection Institute, Pomeranian Pedagogical Academy, 76-200, Słupsk, Poland,
  • Department of Environmental Protection, Collegium Polonicum, Adam Mickiewicz University, 69-100, Słubice, Poland,
  • Department of Water and Soil Analysis, Faculty of Chemistry, Adam Mickiewicz University, 60-613, Poznań, Poland
  • Department of Environmental Protection, Collegium Polonicum, Adam Mickiewicz University, 69-100, Słubice, Poland
  • Analytical Chemistry, Faculty of Chemistry, University of Sofia “St. Kl. Okhridski”, 1164, Sofia, Bulgaria
  • Department of Water and Soil Analysis, Faculty of Chemistry, Adam Mickiewicz University, 60-613, Poznań, Poland
  • [1] J. Mazerski: Fundamentals of chemometry, GUT Press, Gdańsk, Poland, 2000.
  • [2] G. Meinrath, S. Lis, S. But and M. Elbanowski: “Chemometric and Statistical Analysis of Polyoxometalate Interaction with Lanthanide(III) Ions”, Talanta, Vol. 55, (2001), pp. 371–386.[Crossref]
  • [3] L. Herngren, A. Goonetilleke and G. A. Ayoko: “Understanding heavy metal and suspended solids relationships in urban storm water using simulated rainfall”, J. Environ. Manage., Vol. 76, (2005), pp. 149–158.[Crossref]
  • [4] Z. Brożek-Mucha and G. Zadora: “Grouping of ammunition types by means of frequencies of occurrence of GSR”, Forensic Science International, Vol. 135(2), (2003), pp. 97–104.[Crossref]
  • [5] J.A. Lopes and J.C. Menezes: “Industrial fermentation end-product modelling with multilinear PLS”, Chemom. Intell. Lab. Syst., Vol. 68, (2003), pp. 75–81.[Crossref]
  • [6] J. Workman: “The state of multivariate thinking for scientists in industry: 1980–2000”, Chemom. Intell. Lab. Syst., Vol. 60, (2002), pp. 13–23.[Crossref]
  • [7] J. Inczêdy: “The prominent role of chemical information in the development of western civilization”, Chemom. Intell. Lab. Syst., Vol. 47, (1999), pp. 145–148.[Crossref]
  • [8] T. Prato: “A fuzzy logic approach for evaluating ecosystem sustainability”, Ecol. Model., Vol. 187, (2005), pp. 361–368.[Crossref]
  • [9] L.A. Andriantiatsaholiniaina, V.S. Kouikoglu and Y.A. Philis: “Evaluating strategies for sustainable development: fuzzy logic reasoning and sensitivity analysis”, Ecol. Econ., Vol. 48, (2004), pp. 149–172.[Crossref]
  • [10] J. Ravetz: “Integrated assessment for sustainability appraisal in cities and regions”, Environ. Impact Assess. Rev., Vol. 20, (2000), pp. 31–64.[Crossref]
  • [11] C. Cavalcanti: The environment, sustainable development and public policies, Edward Elgar Publishing Inc., Cheltenham, Glos., Northampton, MA, USA, 2002.
  • [12] Community-based Impact Assessment Network for Eastern Africa (CIANEA) guide on environmental assessment and sound design for community-based small scale activities Guide 1: Introduction and environmental management overview, Prepared for use in Kisumu, Kenya, 2003.
  • [13] D.P. Loucks: Sustainability Criteria for Water Resource Systems, Cambridge University Press, 1999.
  • [14] D. Krajnc and P. Glavic: Technological Choices for Sustainability, Springer, Berlin, 2004.
  • [15] J. Seljak, D. Krajnc and P. Glavic: Technological Choices for Sustainability, Springer, Berlin, 2004.
  • [16] V. Simeonov, C. Sarbu, D.L. Massart and S. Tsakovski: “Danube River water data modelling by multivariate data analysis”, Mikrochim. Acta, Vol. 137, (2001), pp. 243–248.
  • [17] I. Stanimirova, M. Daszykowski, D.L. Massart, F. Questier, V. Simeonov and H. Puxbaum: “Chemometrical exploration of the wet precipitation chemistry from the Austrian Monitoring Network (1988–1999)”, J. Environ. Manage., Vol. 74, (2005), pp. 349–363.[Crossref]
  • [18] A. Astel, B. Walna, I. Kurzyca, K. Szczepaniak and J. Siepak: “An application of chemometrics in comparison of atmospheric precipitation pollution profiles in the urban and ecologically protected area”, Anal. Chem., in press.
  • [19] K.M. Banat and F.M. Howari: “Pollution load of Pb, Zn and Cd and mineralogy of the recent sediments of Jordan River/Jordan”, Environ. Inter., Vol. 28(7), (2003), pp. 581–586.[Crossref]
  • [20] J.V. Rios-Arana, E.J. Walsh and J.L. Gardea-Torresdey: “Assessment of arsenic and heavy metal concentrations in water and sediments of the Rio Grande at El Paso-Juarez metroplex region”, Environ. Inter., Vol. 29(7), (2004), pp. 957–971.[Crossref]
  • [21] S. Lee, J.W. Moon and H.S. Moon: “Heavy metals in the bed and suspended sediments of Anyang River, Korea: implications for water quality”, Environ. Geochem. Health, Vol. 25, (2003), pp. 433–452.[Crossref]
  • [22] Y. Kuang-Chung, T. Li-Jyur, Ch. Shih-Hsiung and H. Shien-Tsong: “Correlation analyses of binding behavior of heavy metals with sediment matrices”, Wat. Res., Vol. 35(10), (2001), pp. 2417–2428.[Crossref]
  • [23] A. Choiński: The variability of water circulation on the lubuska upland in the light of analytics of the environment and balance calculations, Polish Society of Friends of Earth Sciences, Zielona Góra, 1981.
  • [24] A. Tessier, P.G. Campbell and M. Bisson: “Sequential extraction procedure for the speciation of particulate trace metals”, Anal. Chem., Vol. 51, (1979), pp. 844–852.[Crossref]
  • [25] G. Głosińska, T. Sobczyński, L. Boszke, K. Bierła and J. Siepak: “Fractionation of Some Heavy Metals in Bottom Sediments from the Middle Odra River (Germany/Poland)”, Pol. J. Environ. Stud., Vol. 14(3), (2005), pp. 305–317.
  • [26] L. Boszke, T. Sobczyński, G. Głosińska, A. Kowalski and J. Siepak: “Distribution of Mercury and Other Heavy Metals in Bottom Sediments of the Middle Odra River (Germany/Poland)”, Pol. J. Environ. Stud., Vol. 13(5), (2004), pp. 495–502.
  • [27] J.W. Einax, D. Truckenbrodt and O. Kampe: “River Pollution Data Interpreted by Means of Chemometric Methods”, Michrochem. J., Vol. 58, (1998), pp. 315–324.[Crossref]
  • [28] J.W. Einax, H. Zwanziger and S. Geiß: Chemometrics in Environmental Analysis, J. Wiley & Sons Ltd, Chichester, 1997.[Crossref]
  • [29] A. Mackiewicz and W. Ratajczak: “Principal components analysis (PCA)”, Comput. Geosci., Vol. 19, (1993), pp. 303–342.[Crossref]
  • [30] D.L. Massart, B.G.M. Vandenginste, S.N. Deming, Y. Michotte and L. Kaufman: Chemometrics: a textbook, Elsevier, Amsterdam, Holland, 1988.
  • [31] S. Wold, K. Esbensen and P. Geladi: “Multi-way principal components and PLS analysis”, Chem. Intell. Lab. Syst., Vol. 2, (1987), pp. 37–52.[Crossref]
  • [32] J.E. Walsh and M.B. Richman: “Seasonality in the associations between surfaces temperatures over the United States and the North Pacific Ocean”, Mon. Weath. Rev., Vol. 109, (1981), pp. 767–773.<0767:SITABS>2.0.CO;2[Crossref]
  • [33] G.D. Thurston: “An assessment of the fine particulate sources and their interaction with meteorological influences via factor analysis”, Atmos. Environ., Vol. 15, (1982), pp. 424–437.
  • [34] C. Henry and G.M. Hidy: “Bridging the gap between air quality and precipitation chemistry”, Atmos. Environ., Vol. 16, (1982), pp. 929–936.[Crossref]
  • [35] P.K. Hopke: “Trace element concentration in summer aerosols at rural sites in New York State and their possible sources and seasonal variations in the composition of ambient sulfate-containing aerosols in the New York area”, Atmos. Environ., Vol. 16, (1982), pp. 1379–1784.
  • [36] M. Norman, S.N. Das, A.G. Pillai, L. Granat and H. Rodhe: “Influence of air mass trajectories on the chemical composition of precipitation in India”, Atmos. Environ., Vol. 35, (2001), pp. 4223–4235.[Crossref]
  • [37] STATISTICA (data analysis software system), version 6, 2001, StatSoft, Inc.,
  • [38] A.V. Filgueiras, I. Lavilla and C. Bendicho: “Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometrics analysis: a case study”, Sci. Total. Environ., Vol. 330, (2004), pp. 115–129.[Crossref]
  • [39] A.K. Meyer (Eds.): IOP - International Odra Project. Results of International Odra Project, Hamburg, Germany, 2002.
  • [40] I. Bojakowska: “Criteria of assessment of water reservoirs sediment pollution (in Polish)”, Geological Review, Vol. 49(3), (2001), pp. 213–218.
  • [41] D. MacDonald: Approach to the Assessment of sediment quality in Florida Coastal Waters. Vol. 1 - Development and evaluation of sediment quality assessment guidelines, Florida Depart. Environ. Protection Office of Water Policy, Tallahassec, Florida, USA, 1994.
  • [42] P. Svete, R. Milacic and B. Pihlar: “Partitioning of Zn, Pb, Cd in river sediments from a led and zinc mining area using the BCR three-step sequential extraction procedure”, J. Environ. Monit., Vol. 3, (2001), pp. 586–590.[Crossref]
  • [43] E. Adamiec, E. Helios-Rybicka: “Distribution of pollutants in the Odra River system Part V. Assessment of total and mobile heavy metals content in the suspended mater and sediments of the Odra River system and recommendations for river chemical monitoring”, Pol. J. Environ. Stud., Vol. 11, (2002), pp. 675–688.
  • [44] B.J. Alloway and D.C. Ayres: Chemical Principles of Environmental Pollution, PWN, Warsaw, Poland, 1999 (in Polish).
  • [45] Z. Borovec: “Evaluation of the concentration of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure”, Sci. Total. Environ., Vol. 177, (1996), pp. 237–250.[Crossref]
  • [46] K. Loska and D. Wiechuła: “Application of principal component analysis for the estimation ofsource of heavy metal contamination in surface sediments from the Rybnik Reservoir”, Chemosphere, Vol. 51(7), (2003), pp. 23–733.
  • [47] V. Simeonov, I. Stanimirova and S. Tsakovski: “Multivariate statistical interpretation of coastal sediment monitoring data”, Fresenius J. Anal. Chem., Vol. 370, (2001), pp. 719–722.[Crossref]
  • [48] I. Stanimirova, S. Tsakovski and V. Simeonov: “Multivariate statistical analysis of coastal sediment data”, Fresen. J. Anal. Chem., Vol. 365, (1999), pp. 489–493.[Crossref]
  • [49] Y. Kuang-Chung, T. Li-Jyur, Ch. Shih-Hsiung and H. Shien-Tsong: “Correlation analyses of binding behavior of heavy metals with sediment matrices”, Wat. Res., Vol. 35(10), (2001), pp. 2417–2428.[Crossref]
  • [50] G. Vos, Y. Brekvoort and P. Buys: “Full-scale treatment of filter backwash water in one step to drinking water”, Desalination, Vol. 113, (1997), pp. 283–284.[Crossref]
  • [51] Z. Teng, J. Huang, K. Fujita and S. Takizawa: “Manganese removal by hollow fibber micro-filter. Membrane separation for drinking water”, Desalination, Vol. 139, (2001), pp. 411–418.[Crossref]
  • [52] A. Gouzinis, N. Kosmidis, D.V. Vayenas and G. Lyberatos: “Removal of Mn and simultaneous removal of NH3, Fe and Mn from potable water using a trickling filter”, Wat. Res., Vol. 32(8), (1998), pp. 2442–2450.
  • [53] G. Thurston, J. Spengler and A. Quantative: “Assessment of Source Contributions to Inhalable Particulate Matter Pollution in Metropolitan Boston”, Atmos. Environ., Vol. 19(1), (1985), pp. 9–25.[Crossref]
  • [54] V. Simeonov, S. Tsakovski, T. Lavric, P. Simeonova and H. Puxbaum: “Multivariate Statistical Assessment of Air Quality. A Case Study”, Microchim. Acta, Vol. 148, (2004), pp. 293–298.[Crossref]
  • [55] V. Simeonov, J. Stratis, C. Samara, G. Zachariadis, D. Voutsa, A. Anthemidis, M. Sofoniou and Th. Kouimtzis: “Assessment of the Surface Water Quality in Northern Greece”, Water Res., Vol. 37(17), (2003), pp. 4119–4124.[Crossref]
  • [56] V. Simeonov, H. Puxbaum, S. Tsakovski, C. Sarbu and M. Kalina: “Classification and Receptor Modelling of Wet Precipitation Data from Central Austria (1984–1993)”, Environmentrics, Vol. 10, (1999), pp. 137–152.<137::AID-ENV343>3.0.CO;2-I[Crossref]
  • [57] Th. Spanos, V. Simeonov, S. Tsakovski and D. Thiokas: “Chemometric Study of Soil Analysis Data”, Central European J. Chem., Vol. 2(2), (2004), pp. 402–416.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.