Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 4 | 3 | 476-488
Tytuł artykułu

Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells

Treść / Zawartość
Warianty tytułu
Języki publikacji
Partially nanowire-structured TiO2 was prepared by a hydrothermal processing followed by calcination in air. The hydrogen titanate powder as-synthesized was calcined at 300 °C for 4 h to obtain the partially nanowire-structured TiO2. A dye-sensitized solar cell (DSC) with a film thickness of 5.6 μm, fabricated using the partially nanowire-structured TiO2 showed better performance than using a fully nanowire-structured TiO2 or a conventional equi-axed TiO2 nanopowder. The short-circuit current density (JSC), the open-circuit voltage (VOC), the fill factor (FF) and the overall efficiency (η) are 11.9 mA/cm2, 0.754 V, 0.673 and 6.01 %, respectively. The effects of one-dimensional nanostructure and electron expressway concept are discussed.

Opis fizyczny
  • Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
  • Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
  • Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
  • [1] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: “Formation of titanium oxide nanotube”, Langmuir, Vol. 4, (1998), pp. 3160–3163.[Crossref]
  • [2] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: “Titania nanotubes prepared by chemical processing”. Adv. Mater., Vol. 11, (1999), pp. 1307–1311.<1307::AID-ADMA1307>3.0.CO;2-H[Crossref]
  • [3] D.-S. Seo, J.-K. Lee and H. Kim: “Preparation of nanotube-shaped TiO2 powder”, J. Cryst. Growth, Vol. 229, (2001), pp. 428–432.[Crossref]
  • [4] Q.H. Zhang, L.A. Gao, J. Sun and S. Zheng: “Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals”, Chem. Lett., Vol. 31, (2002), pp. 226–227.[Crossref]
  • [5] C.H. Lin, S.H. Chien, J.H. Chao, C.Y. Sheu, Y.C. Cheng, Y.J. Huang and C.H. Tsai: “The synthesis of sulfated titanium oxide nanotubes”, Catal. Lett., Vol. 80, (2002), pp. 153–159.[Crossref]
  • [6] Y.B. Mao, S. Banerjee and S.S. Wong: “Hydrothermal synthesis of perovskite nanotubes”, Chem. Comm., (2003), pp. 408–409. [Crossref]
  • [7] Y.Q. Wang, G.Q. Hu, X.F. Duan, H.L. Sun and Q.K. Xue: “Microstructure and formation mechanism of titanium dioxide nanotubes”, Chem. Phys. Lett., Vol. 365, (2002), pp. 427–431.[Crossref]
  • [8] G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan and L.M. Peng: “Preparation and structure analysis of titanium oxide nanotubes”, Appl. Phys. Lett., Vol. 79, (2001), pp. 3702–3704.[Crossref]
  • [9] Q. Chen, G.H. Du, S. Zhang and L.M. Peng: “The structure of trititanate nanotubes”, Acta Crystallogr. B, Vol. 58, (2002), pp. 587–593.[Crossref]
  • [10] Q. Chen, W.Z. Shou, G.H. Du and L.M. Peng: “Trititanate nanotubes made via a single alkali treatment”, Adv. Mater., Vol. 14, (2002), pp. 1208–1211.<1208::AID-ADMA1208>3.0.CO;2-0[Crossref]
  • [11] S. Zhang, L.M. Peng, Q. Chen, G.H. Du, G. Dawson and W.Z. Zhou: “Formation mechanism of H2Ti3O7 nanotubes”, Phys. Rev. Lett., Vol. 91, (2003), art. 256103.
  • [12] B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang and N. Wang: “Formation mechanism of TiO2 nanotubes”, Appl. Phys. Lett., Vol. 82, (2003), pp. 281–283.[Crossref]
  • [13] X. Sun and Y. Li: “Synthesis and characterization of ion-exchangeable titanate nanotubes”, Chem. Euro. J., Vol. 9, (2003), pp. 2229–2238.[Crossref]
  • [14] R.Z. Ma, Y. Bando and T. Sasaki: “Nanotubes of lepidocrocite titanates”, Chem. Phys Lett., Vol. 380, (2003), pp. 577–582.[Crossref]
  • [15] J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo and Z. Zhang: “Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2”, Darton Trans., (2003), pp. 3898–3901.
  • [16] S. Zhang, W. Li, Z. Jin, J. Yang, J. Zhang, Z. Du and Z. Zhang: “Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid”, J. Solid State Chem., Vol. 177, (2004), pp. 1365–1371.[Crossref]
  • [17] M. Zhang, Z.S. Jin, J.W. Zhang, X.Y. Guo, J.J. Yang, W. Li, X.D. Wang and Z.J. Zhang: “Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2”, J. Molec. Catal. A: Chem., Vol. 217, (2004), pp. 203–210.[Crossref]
  • [18] Y. Suzuki and S. Yoshikawa: “Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method”, J. Mater. Res., Vol. 19, (2004), pp. 982–985.[Crossref]
  • [19] R. Yoshida, Y. Suzuki and S. Yoshikawa: “Effects of synthetic conditions and heat treatment on the structure of partially ion-exchanged titanate nanotubes”, Mater. Chem. Phys., Vol. 91, (2005), pp. 409–416.[Crossref]
  • [20] A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio and H. Aritani: “Synthesis of nanotube from a layered H2Ti4O9·H2O in a hydrothermal treatment using various titania sources”, J. Mater. Sci., Vol. 39, (2004), pp. 4239–4245.[Crossref]
  • [21] G.H. Du, Q. Chen, P.D. Han, Y. Yu and L.M. Peng: “Potassium titanate nanowires: structure, growth, and optical properties”, Phys. Rev. B, Vol. 67, (2003) art. 035323.
  • [22] S. Yin, Y. Fujishiro, J. Wu, M. Aki and T. Sato: “Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions”, J. Mater. Proc. Tech., Vol. 137, (2003), pp. 45–48.[Crossref]
  • [23] A.R. Armstrong, G. Armstrong, J. Canales and P.G. Bruce: “TiO2-B nanowires”, Angew. Chem. Int. Ed., Vol. 43, (2004), pp. 2286–2288.[Crossref]
  • [24] L. Kavan, M. Kalbac, M. Zukalova, I. Exnar, V. Lorenzen, R. Nesper and M. Grätzel: “Lithium storage in nanostructured TiO2 made by hydrothermal growth”, Chem. Mater., Vol. 16, (2004), pp. 477–485.[Crossref]
  • [25] R. Yoshida, Y. Suzuki and S. Yoshikawa: “Synthesis of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments”, J. Solid State Chem., Vol. 178, (2005), pp. 2179–2185.[Crossref]
  • [26] Y. Suzuki, S. Pavasupree, S. Yoshikawa and R. Kawahata: “Natural rutile-derived titanate nanofibers prepared by direct hydrothermal processing”, J. Mater. Res., Vol. 20, (2005), pp. 1063–1070.[Crossref]
  • [27] S. Pavasupree, Y. Suzuki, S. Yoshikawa and R. Kawahata: “Synthesis of titanate, TiO2 (B), and anatase TiO2 nanofibers from natural rutile sand”, J. Solid State Chem., Vol. 178, (2005), pp. 3110–3116.[Crossref]
  • [28] Y. Suzuki, S. Pavasupree, S. Yoshikawa and R. Kawahata: “A possible niche route to obtain fibrous TiO2 powder using direct hydrothermal treatment from natural rutile”, in contribution.
  • [29] Y.K. Zhou, L. Cao, F.B. Zhang, B.L. He and H.L. Li: “Litium insertion into TiO2 nanotube prepared by the hydrothermal process”, J. Electrochem. Soc., Vol. 150, (2003), pp. A1246–A1249.[Crossref]
  • [30] S.H, Lim, J.Z. Luo, Z.Y. Zhong, W. Ji and J.Y. Lin: “Room-temperature hydrogen uptake by TiO2 nanotubes”, Inorg. Chem., Vol. 44, (2005), pp. 4124–4126.[Crossref]
  • [31] D.V. Bavykin, A.A. Lapkin, P.K. Plucinski, J.M. Friedrich and F.C. Walsh: “Reversible storage of molecular hydrogen by sorption into multilayered TiO2nanotubes”, J. Phys. Chem. B, Vol. 109, (2005), pp. 19422–19427.[Crossref]
  • [32] S. Uchida, R. Chiba, M. Tomiha, N. Masaki and M. Shirai: “Application of titania nanotubes to a dye-sensitized solar cell”, Electrochem., Vol. 70, (2002), pp. 418–420.
  • [33] B. O’Regan and M. Grätzel: “A low-cost, high-efficiency solar-cell based on dyesensitized colloidal TiO2 films”, Nature, Vol. 353, (1991), pp. 737–740.[Crossref]
  • [34] K.-H. Jung, J.S. Hong, R. Vittal and K.-J. Kim: “Enhanced photocurrent of dye-sensitized solar cells by modification of TiO2 with carbon nanotubes”, Chem. Lett., Vol. 31, (2002), pp. 864–865.[Crossref]
  • [35] K.-H. Jung, S.-R. Jang, R. Vittal, D.W. Kim and K.-J. Kim: “Photocurrent improvement by incorporation of single-wall carbon nanotubes in TiO2 film of dye-sensitized solar cells”, Bull. Korean Chem. Soc., Vol. 24, (2003), pp. 1501–1504.[Crossref]
  • [36] S.-R. Jang, R. Vittal and K.-J. Kim: “Incorporation of functionalized single-wall carbon nanotubes in dye-sensitized TiO2 solar cells”, Langmuir, Vol. 20, (2004), pp. 9807–9810.[Crossref]
  • [37] M.Y. Song, D.K. Kim, K.J. Ihn, S.M. Jo and D.Y. Kim: “Electrospun TiO2 electrodes for dye-sensitized solar cells”, Nanotechnology, Vol. 15, (2004), pp. 1861–1865.[Crossref]
  • [38] J.B. Baxter and E.S. Aydil: “Nanowire-based dye-sensitized solar cells”, Appl. Phys. Lett., Vol. 86, (2005), art. 053114.
  • [39] M. Law, L.E. Greene, J.C. Johnson, R. Saykally and P.D. Yang: “Nanowire dye-sensitized solar cells,” Nature Mater., Vol. 4, (2005), pp. 455–459.[Crossref]
  • [40] C.C. Tsai and H. Teng: “Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment,” Chem. Mater., Vol. 16, (2004), pp. 4352–4358.[Crossref]
  • [41] T. Sekino: “Does the one-dimensional nanospace in titania nanotubes contribute to the functionalization?” (in Jpn.), Preprints of the 6th Kansai Branch Forum for Young Scientists and Engineers on Ceramic Studies, The Ceramic Society of Japan, 2003, p. 28.
  • [42] R. Yoshida: Syntheses and applications of one-dimensional titania-related nanomaterials, Thesis (MS), Graduate School of Energy Science, Kyoto University, 2005
  • [43] T. Koyanagi, K. Ookuma and A. Tanaka: “The changing nano-structure and crystal structure of heated nano-hollow titanium dioxide and it’s application” (in Jpn.), emphMater. Integration, Vol. 18(1), (2005), pp. 20–25.
  • [44] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos and M. Grätzel: “Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl−, Br−, I−, CN−, and SCN−) on nanocrystalline titanium dioxide electrodes”, J. Am. Chem. Soc., Vol. 115, (1993), pp. 6382–6390.[Crossref]
  • [45] H.Y. Zhu, Y. Lan, X.P. Gao, S.P. Ringer, Z.F. Zheng, D.Y. Song and J.C. Zhao: “Phase transition between nanostructures of titanium dioxides via simple wet-chemical reactions”, J. Am. Chem. Soc., Vol. 127, (2005), pp. 6730–6736.[Crossref]
  • [46] K. Asagoe, S. Ngamsinlapasathian, Y. Suzuki and S. Yoshikawa: “Mixing effect of TiO2 (B) nanowires for dye-sensitized solar cells”, unpublished work.
  • [47] S. Pavasupree, S. Ngamsinlapasathian, Y. Suzuki and S. Yoshikawa: “Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticled TiO2 with mesoporous structure”, unpublished work.
  • [48] M. Adachi, I. Okada, S. Ngamsinlapasathian, Y. Murata, and S. Yoshikawa: “Dye-sensitized solar cells using semiconductor thin film composed of titania nanotubes”, Electrochem., Vol. 70, (2002), pp. 449–452.
  • [49] M. Adachi, Y. Murata, I. Okada and S. Yoshikawa: “Formation of titania nanotubes and applications for dye-sensitized solar cells”, J. Electrochem. Soc., Vol. 150, (2003), pp. G488–G493.[Crossref]
  • [50] M. Adachi: “Dye-sensitized solar cells using newly formed nanostructured TiO2 (in Jpn)”, Ceram Jpn., (Bull. Ceram. Soc. Japan)., Vol. 39, (2004), pp. 431–434.
  • [51] K. Hara, S. Igari, S. Takano and G. Fujihashi: “Characterization of photovoltaic performance of dye-sensitized solar cells”, Electrochem., Vol. 73, (2005), pp. 887–896.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.