Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The thin films of TiO2 doped by Mn non-uniformly were prepared by sol-gel method under process control. In our preceding study, we investigated in detail, the effect of doping mode on the photocatalytic activity of TiO2 films showing that Mn non-uniform doping can greatly enhance the activity. In this study we looked at the effect of doping concentration on the photocatalytic activity of the TiO2 films. In this paper, the thin films were characterized by UV-vis spectrophotometer and electrochemical workstation. The activity of the photocatalyst was also evaluated by photocatalytic degradation rate of aqueous methyl orange under UV radiation. The results illustrate that the TiO2 thin film doped by Mn non-uniformly at the optimal dopant concentration (0.7 at %) is of the highest activity, and on the contrary, the activity of those doped uniformly is decreased. As a comparison, in 80 min, the degradation rate of methyl orange is 62 %, 12 % and 34 % for Mn non-uniform doping film (0.7 at %), the uniform doping film (0.7 at %) and pure titanium dioxide film, respectively. We have seen that, for the doping and the pure TiO2 films, the stronger signals of open circuit potential and transient photocurrent, the better photocatalytic activity. We also discusse the effect of dopant concentration on the photocatalytic activity of the TiO2 films in terms of effective separation of the photon-generated carriers in the semiconductor.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
234-245
Opis fizyczny
Daty
wydano
2006-06-01
online
2006-06-01
Twórcy
autor
autor
- Institute Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640, Guangzhou, People Republic of China
autor
- Institute Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640, Guangzhou, People Republic of China, lixj@ms.giec.ac.cn
autor
- Institute Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640, Guangzhou, People Republic of China
autor
- Institute Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640, Guangzhou, People Republic of China
Bibliografia
- [1] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann: “Environmental applications of semiconductor photocatalysis”, Chem. Rev., Vol. 95, (1995), pp. 69–72. http://dx.doi.org/10.1021/cr00033a004[Crossref]
- [2] Y.M. Cho, W.Y. Choi, C.H. Lee, T. Hyeon and H.I. Lee: “Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2”, Environ. Sci. Technol., Vol. 35, (2001), pp. 966–970. http://dx.doi.org/10.1021/es001245e[Crossref]
- [3] W. Choi, J.Y. Ko, H. Park and J.S. Chung: “Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone”, Appl. Catal. B: Environ., Vol. 31, (2001), pp. 209–213. http://dx.doi.org/10.1016/S0926-3373(00)00281-2[Crossref]
- [4] W.Y. Teoh, L. Madler, D. Beydoun, S.E. Pratsinis and R. Amal: “Direct (one-step) synthesis of TiO2 and Pt/TiO2 nanoparticles for photocatalytic mineralisation of sucrose”, Chem. Eng. Sci., Vol. 60, (2005), pp. 5852–5861. [Crossref]
- [5] M. Hirano and K. Ota: “Direct formation and photocatalytic performance of anatase (TiO2)/silica (SiO2) composite nanoparticles”, J. Am. Ceram. Soc., Vol. 87, (2004), pp. 1567–1570. [Crossref]
- [6] A. Di Paola, E. Garcia-Lopez, S. Ikeda, G. Marci, B. Ohtani and L. Palmisano: “Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2”, Catal. Today, Vol. 75, (2002), pp. 87–93.
- [7] W.Y. Choi, A. Termin and M.R. Hoffmann: “The role of metal-ion dopants in quantum-sized TiO2 - correlation between photoreactivity and charge-carrier recombination dynamics”, J. Phys. Chem., Vol. 98, (1994), pp. 13669–13679. [Crossref]
- [8] W. Xu, X.J. Li, S.J. Zheng and J.G. Wang: “Mechanism for Enhanced Photocatalytic Activity of Titanium Dioxide Film Doped by Mn under Control”, Chem. J. Chinese U., Vol. 26, (2005), pp. 2297–2301.
- [9] J.G. Yu and X.J. Zhao: “Effect of surface treatment on the photocatalytic activity and hydrophilic property of the sol-gel derived TiO2 thin films”, Mater. Res. Bull., Vol. 36, (2001), pp. 97–107. http://dx.doi.org/10.1016/S0025-5408(00)00475-X[Crossref]
- [10] J.G. Yu and X.J. Zhao: “Preparation and microstructure of the porous TiO2 nanometer thin films by sol-gel method”, J. Inorg. Mater., Vol. 15, (2000), pp. 347–355.
- [11] Y. Yang, X.J. Li, J.T. Chen and L.Y. Wang: “Effect of doping mode on the photocatalytic activities of Mo/TiO2”, J. Photochem. Photobiol. A: Chemistry, Vol. 163, (2004), pp. 517–522. http://dx.doi.org/10.1016/j.jphotochem.2004.02.008[Crossref]
- [12] Y. Zhang, J.C. Crittenden, D.W. Hand and D.L. Perram: “Fixed-bed photocatalysts for solar decontamination of water”, Environ. Sci. Technol., Vol. 28, (1994), pp. 435–442. [Crossref]
- [13] S.W. Ding, L.Y. Wang, S.Y. Zhang, Q.X. Zhou, Y. Ding, S.J. Liu, Y.C. Liu and Q.Y. Kang: “Hydrothermal synthesis, structure and photocatalytic property of nano-TiO2-MnO2”, Sci. Chnia. Ser. B, Vol. 46, (2003), pp. 542–548. [Crossref]
- [14] W.D. Kingery, H.K. Bowen and D.R. Uhlmann (Eds.): Introduction to Ceramics, 2nd ed., John Wiley & Sons, New York, 1976.
- [15] Y.Q. Wang, H.M. Cheng and J.M. Ma: “The photoelectrochemical properties of composite titanium dioxide and ferric oxide nanocrystalline electrodes”, Acta Phys.-Chem. Sin., Vol. 15, (1999), pp. 222–227.
- [16] A.S. Grove (Ed.): Physics and Technology of Semiconductor Devices, John Wiley & Sons, New York, 1976.
- [17] J.G. Yu, J.F. Xiong, B. Cheng and S.W. Liu: “Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity”, Appl. Catal. B: Environ., Vol. 60, (2005), pp. 211–221. http://dx.doi.org/10.1016/j.apcatb.2005.03.009[Crossref]
- [18] T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishii and S. Ito: “A patterned TiO2(Anatase)/TiO2(Rutile) bilayer-type photocatalyst: Effect of the Anatase/Rutile junction on the photocatalytic activity”, Angew. Chem. Int. Ed., Vol. 41, (2002), pp. 2811–2813. http://dx.doi.org/10.1002/1521-3773(20020802)41:15<2811::AID-ANIE2811>3.0.CO;2-#[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11532-006-0010-8