PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 1 | 34-56
Tytuł artykułu

Quantum continuous measurements: The stochastic Schrödinger equations and the spectrum of the output

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stochastic Schrödinger equation, of classical or quantum type, allows to describe open quantum systems under measurement in continuous time. In this paper we review the link between these two descriptions and we study the properties of the output of the measurement. For simplicity we deal only with the diffusive case. Firstly, we discuss the quantum stochastic Schrödinger equation, which is based on quantum stochastic calculus, and we show how to transform it into the classical stochastic Schrödinger equation by diagonalization of suitable commuting quantum observables. Then, we give the a posteriori state, the conditional system state at time t given the output up to that time, and we link its evolution to the classical stochastic Schrödinger equation. Moreover, the relation with quantum filtering theory is shortly discussed. Finally, we study the output of the continuous measurement, which is a stochastic process with probability distribution given by the rules of quantum mechanics. When the output process is stationary, at least in the long run, the spectrum of the process can be introduced and its properties studied. In particular we show how the Heisenberg uncertainty relations give rise to characteristic bounds on the possible spectra and we discuss how this is related to the typical quantum phenomenon of squeezing. We use a simple quantum system, a two-level atom stimulated by a laser, to discuss the differences between homodyne and heterodyne detection and to explicitly show squeezing and anti-squeezing of the homodyne spectrum and the Mollow triplet in the fluorescence spectrum.
Wydawca

Rocznik
Tom
1
Strony
34-56
Opis fizyczny
Daty
otrzymano
2013-01-16
zaakceptowano
2013-06-12
online
2013-08-13
Twórcy
  • Politecnico di Milano, Department of Mathematics,
    Piazza Leonardo da Vinci 32, 20133 Milano, Italy, alberto.barchielli@polimi.it
  • Istituto Nazionale di Fisica Nucleare, Sezione di Milano,
    Via Celoria 16, 20133 Milano, Italy
  • Istituto Nazionale di Alta Matematica, GNAMPA
    (Gruppo Nazionale per l’Analisi Matematica,
    la Probabilità e le loro Applicazioni)
Bibliografia
  • [1] K. Kraus, States, Effects and Operations, Lect. NotesPhys. 190 (Springer, Berlin, 1980).
  • [2] E. B. Davies, Quantum Theory of Open Systems (AcademicPress, London, 1976).
  • [3] A. Barchielli, L. Lanz, and G. M. Prosperi, Nuovo Cimento72B, 79 (1982).
  • [4] A. Barchielli, and G. Lupieri, J. Math. Phys. 26, 2222(1985).[Crossref]
  • [5] A. Barchielli, Phys. Rev. A 34, 1642 (1986).
  • [6] V. P. Belavkin, in Modelling and Control of Systems,edited by A. Blaquière, Lecture Notes in Control andInformation Sciences 121 (Springer, Berlin, 1988)pp. 245–265.
  • [7] A. Barchielli, and V. P. Belavkin, J. Phys. A: Math.Gen. 24, 1495 (1991).[Crossref]
  • [8] A. S. Holevo, Statistical Structure of Quantum Theory,Lect. Notes Phys. m 67 (Springer, Berlin, 2001).
  • [9] H. J. Carmichael, An Open System Approach toQuantum Optics, Lect. Notes Phys. m 18 (Springer,Berlin, 1993).[Crossref]
  • [10] H. M. Wiseman, G. J. Milburn, Phys. Rev. A 47, 1652(1993).
  • [11] H. M. Wiseman, and G. J. Milburn, Phys. Rev. Lett.70, 548 (1993).[Crossref]
  • [12] A. Barchielli, and A. M. Paganoni, Quantum Semiclass.Opt. 8, 133 (1996).[Crossref]
  • [13] H. M. Wiseman, Quantum Semiclass. Opt. 8, 205(1996).[Crossref]
  • [14] G. J. Milburn, Quantum Semiclass. Opt. 8, 269 (1996).[Crossref]
  • [15] H. J. Carmichael, Statistical Methods in QuantumOptics, Vol 2 (Berlin, Springer, 2008).
  • [16] A. Barchielli, and M. Gregoratti, Quantum Trajectoriesand Measurements in Continuous Time: The DiffusiveCase, Lect. Notes Phys. 782 (Springer, Berlin,2009).
  • [17] H. M. Wiseman, G. J. Milburn, Quantum Measurementand Control (Cambridge, Cambridge UniversityPress, 2010).
  • [18] R. L. Hudson, and K. R. Parthasarathy, Commun.Math. Phys. 93, 301 (1984).[Crossref]
  • [19] C. W. Gardiner, and M. J. Collet, Phys. Rev. A 31,3761 (1985).[Crossref]
  • [20] K. R. Parthasarathy, An Introduction to QuantumStochastic Calculus (Birkhäuser, Basel, 1992).
  • [21] C. W. Gardiner, and P. Zoller, Quantum Noise,Springer Series in Synergetics, Vol. 56 (Springer,Berlin, 2000).[Crossref]
  • [22] A. Barchielli, in Open Quantum Systems III, edited byS. Attal, A. Joye, and C.-A. Pillet, Lect. Notes Math. 1882 (Springer, Berlin, 2006) pp. 207–291.
  • [23] A. Barchielli, Quantum Opt. 2, 423 (1990).
  • [24] A. Barchielli, and G. Lupieri, J. Math. Phys. 41, 7181(2000).[Crossref]
  • [25] A. Barchielli, and N. Pero, J. Opt. B: Quantum Semiclass.Opt. 4, 272 (2002).[Crossref]
  • [26] F. Fagnola, and S. J. Wills, J. Funct. Anal. 198, 279(2003).[Crossref]
  • [27] F. Fagnola, in Open Quantum Systems II, edited byS. Attal, A. Joye, and C.-A. Pillet, Lect. Notes Math.1881 (Springer, Berlin, 2006) pp. 183–220.
  • [28] R. Castro Santis, and A. Barchielli, Rep. Math. Phys.67, 229 (2011).[Crossref]
  • [29] L. Bouten, R. Van Handel, and M. R. James, SIAM J.Control Optim. 46 2199 (2007).[Crossref]
  • [30] A. Barchielli, in Quantum Probability and RelatedTopics VI, edited by L. Accardi, (World Scientific,Singapore, 1991) pp. 111–125.
  • [31] A. Barchielli, in Quantum Communication, Computing,and Measurement, edited by O. Hirota, A. S. Holevo,and C. M. Caves, (Plenum Press, New York, 1997) pp.243–252.
  • [32] H. P. Yuen, and J. H. Shapiro, IEEE Trans. Inf. TheoryIT-24, 657 (1978).
  • [33] R. L. Hudson, and J. M. Lindsay J. Funct. Anal. 61,202 (1985).[Crossref]
  • [34] A. Frigerio, Publ. RIMS Kyoto Univ. 21, 657 (1985).
  • [35] M. Gregoratti, Infin. Dimens. Anal. Quantum Probab.Relat. Top. 3, 483 (2000).
  • [36] M. Gregoratti, Commun. Math. Phys. 222, 181 (2001);Commun. Math. Phys. 264, 563 (2006).
  • [37] J. H. Shapiro, H. P. Yuen, and J. A. Machado Mata,IEEE Trans. Inf. Theory IT-25, 179 (1979).
  • [38] H. P. Yuen, and J. H. Shapiro, IEEE Trans. Inf. TheoryIT-26, 78 (1980).
  • [39] H. P. Yuen, and V. W. S. Chan, Optics Lett. 8, 177(1983).
  • [40] V. P. Belavkin, Phys. Lett. A 140, 355 (1989).
  • [41] V. P. Belavkin, and P. Staszewski, Phys. Rev. A 45,1347 (1992).[Crossref]
  • [42] V. P. Belavkin, Found. Phys. 24, 685 (1994).
  • [43] M. Ozawa, J. Math. Phys. 25, 79 (1984); Publ. RIMSKyoto Univ. 21, 279 (1985).
  • [44] V. P. Belavkin, and S. Edwards, in QuantumStochastic and Information, edited by V. P. Belavkinand M. Gutˇa, (World Scientific, Singapore, 2008) pp.143–205.
  • [45] L. Bouten, and R. van Handel, in Quantum Stochasticand Information, edited by V. P. Belavkin and M.Gutˇa, (World Scientific, Singapore, 2008) pp. 206–238.
  • [46] L. Bouten, in Quantum Potential Theory, edited by U. Franz and M. Schürmann, Lecture Notes in Mathematics1954 (Springer, Berlin, 2008) pp. 277–307.
  • [47] A. Barchielli, M. Gregoratti, and M. Licciardo, Int. J.Quantum Inf. 6, 581 (2008).[Crossref]
  • [48] A. Barchielli, and M. Gregoratti, in Quantum Probabilityand Related Topics, edited by J. C. García,R. Quezada, and S. B. Sontz, QP-PQ: Quantum Probabilityand White Noise Analysis Vol. 23 (World Scientific,Singapore, 2008) pp. 63–76.[Crossref]
  • [49] A. Barchielli, M. Gregoratti, and M. Licciardo, EurophysicsLetters (EPL) 85, 14006 (2009).[Crossref]
  • [50] R. M. Howard, Principles of random signal analysisand low noise design, the power spectral density andits applications (Wiley, New York, 2002).
  • [51] J. Wang, H. M. Wiseman, and G. J. Milburn, Chem.Phys. 268, 221 (2001).[Crossref]
  • [52] J. E. Gough, Phil. Trans. R. Soc. A 370 no. 1979, 5241(2012).
  • [53] A. C. Doherty, A. Szorkovszky, G. I. Harris, andW. P. Bowen, Phil. Trans. R. Soc. A 370 no. 1979,5338 (2012).
  • [54] V. P. Belavkin, Phil. Trans. R. Soc. A 370 no. 1979,5396 (2012).
  • [55] M. R. James, in Quantum Stochastic and Information,edited by V. P. Belavkin and M. Gutˇa, (World Scientific,Singapore, 2008) pp. 280–299.
  • [56] M. R. James, in Proceedings of the 30th Chinese ControlConference, (IEEE, 2011) pp. 26–34.
  • [57] C. Altafini, and F. Ticozzi, IEEE TRANS. AUT. CONTROL57, 1898 (2012).
  • [58] F. Ticozzi, K. Nishio, and C. Altafini, IEEE TRANS.AUT. CONTROL 58, 74 (2013).
  • [59] A. Barchielli, C. Pellegrini, and F. Petruccione, EurophysicsLetters (EPL) 91, 24001 (2010).[Crossref]
  • [60] A. Barchielli, C. Pellegrini, J. Math. Phys. 51, 112104(2010).
  • [61] A. Barchielli, P. Di Tella, C. Pellegrini, and F. Petruccione,in Quantum Probability and Related Topics,edited by R. Rebolledo, and M. Orszag, QP-PQ:Quantum Probability and White Noise Analysis Vol.27 (World Scientific, Singapore, 2011) pp. 52–67.
  • [62] A. Barchielli, and M. Gregoratti, Phil. Trans. R. Soc.A 370 no. 1979, 5364 (2012).
  • [63] J. E. Gough, M. R. James, and H. I. Nurdin, Phil. Trans.R. Soc. A 370 no. 1979, 5408 (2012).
  • [64] A. Barchielli, C. Pellegrini, and F. Petruccione, Phys.Rev. A 86, 063814 (2012).[Crossref]
  • [65] N. Tezak, A. Niederberger, D. S. Pavlichin, G. Sarma,and H. Mabuchi, Phil. Trans. R. Soc. A 370 no. 1979,5270 (2012).
  • [66] H. I. Nurdin and J. E. Gough, Phil. Trans. R. Soc. A370 no. 1979, 5422 (2012).
  • [67] D. G. Evans, J. E. Gough, and M. R. James, Phil. Trans.R. Soc. A 370 no. 1979, 5437 (2012).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_qmetro-2013-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.