Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 4 | 45-50
Tytuł artykułu

Influence of expanded graphite (EG) and graphene oxide (GO) on physical properties of PET based nanocomposites

Treść / Zawartość
Warianty tytułu
Języki publikacji
This work is the continuation and refinement of already published communications based on PET/EG nanocomposites prepared by in situ polymerization1, 2. In this study, nanocomposites based on poly(ethylene terephthalate) with expanded graphite were compared to those with functionalized graphite sheets (GO). The results suggest that the degree of dispersion of nanoparticles in the PET matrix has important effect on the structure and physical properties of the nanocomposites. The existence of graphene sheets nanoparticles enhances the crystallization rate of PET. It has been confirmed that in situ polymerization is the effective method for preparation nanocomposites which can avoid the agglomeration of nanoparticles in polymer matrices and improve the interfacial interaction between nanofiller and polymer matrix. The obtained results have shown also that due to the presence of functional groups on GO surface the interactions with PET matrix can be stronger than in the case of exfoliated graphene (EG) and matrix.

Opis fizyczny
  • West Pomeranian University of Technology, Szczecin, Institute of Materials Science and Engineering, Piastów Av. 19, 70-310 Szczecin, Poland,
  • West Pomeranian University of Technology, Szczecin, Institute of Materials Science and Engineering, Piastów Av. 19, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Department of Chemical Engineering
  • Slovak Academy of Sciences, Polymer Institute, Dúbravská cesta 9, 845 41 Bratislava 45, Slovakia
  • Slovak Academy of Sciences, Polymer Institute, Centre of Excellence FUN-MAT, Dúbravská cesta 9, 845 41 Bratislava 45, Slovakia
  • West Pomeranian University of Technology, Szczecin, Institute of Materials Science and Engineering, Piastów Av. 19, 70-310 Szczecin, Poland
  • 1. Paszkiewicz, S., Szymczyk, A., Špitalský, Z., Soccio, M., Mosnáček, J., Ezquerra, T.A. & Rosłaniec, Z. (2012). Infl uence of EG on electrical conductivity of PET/EG nanocomposites prepared by in situ polymerization. J. Polym. Sci.: Part B: Polym. Phys. 50, 1645-1652. DOI:10.1002/polb.23176.[Crossref]
  • 2. Paszkiewicz, S., Szymczyk, A., Špitalský, Z., Mosnáček, J. & Rosłaniec, Z. (2012). Morphology and Thermal Properties of Expanded Graphite (EG)/Poly(ethylene terephthalate) (PET) Nanocomposites. CHEMIK 66(1), 21-30.
  • 3. Mark, H.F., Bikales, N.M., Overberger, C.G. & Menges, G. (1988). Encyclopedia of polymer science and engineering (2nd ed.). USA: Wiley Interscience.
  • 4. Bhimaraj, P., Burris, D.L., Action, J., Sawyer, W.G., Toney, C.G., Siegel, R.W. & Schadel, L.S. (2005). Effect of matrix morphology on the wear and friction behavior of alumina nanoparticle/poly(ethylene terephthalate) composites, Wear 258 (9), 1437-1443. DOI: 10.1016/j.wear.2004.09.077.[Crossref]
  • 5. Krishnamoorti, R. & Vaia, R.A. (2001). Polymer nanocomposites, synthesis, characterization and modeling. ACS symposium series, Washington DC, American Chemical Society.
  • 6. Jain, S., Goossens, H., Duin, M. & Lemstra, P. (2000). Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polym. 46, 8805-8818. DOI: 10.1016/j.polymer.2004.12.062.[Crossref]
  • 7. Li, Z., Luo, G., Wie, F. & Huang, Y. (2006). Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Comp. Sci. Techn. 66, 1022-1029. DOI: 10.1016/j.compscitech.2005.08.006.[Crossref]
  • 8. Zheng, G., Wu, J., Wang, W. & Pan, C. (2004). Characterizations of expanded graphite/polymer composites prepared by in situ polymerization Carbon 42, 2839-2847. DOI: 10.1016/j. carbon.2004.06.029.[Crossref]
  • 9. Szymczyk, A., Paszkiewicz, S. & Roslaniec, Z. (2013). Infl uence of intercalated organoclay on the phase structure and physical properties of PTT-PTMO block copolymers. Polym. Bull. 70, 1575-1590. DOI: 10.1007/s00289-012-0859-y.[Crossref]
  • 10. Hernández, J.J., García-Gutiérrez, M.C., Nogales, A., Rueda, D.R., Kwiatkowska, M., Szymczyk, A., Roslaniec, Z., Concheso, A., Guinea, I. & Ezquerra, T.A. (2009). Infl uence of preparation procedure on the conductivity and transparency of SWCNT-polymer nanocomposites. Comp. Sci. Tech. 69, 1867-1872. DOI: 10.1016/j.compscitech.2009.04.002.[Crossref]
  • 11. Szymczyk, A., Roslaniec, Z., Zenker, M., García-Gutiérrez, M.C., Hernández, J.J., Rueda, D.R., Nogales, A. & Ezquerra, T.A. (2011). Preparation and characterization of nanocomposites based on COOH functionalized multi-walled carbon nanotubes and on poly(trimethylene terephthalate). eXPR. Polym. Lett. 5(11), 977-995. DOI: 10.3144/expresspolymlett.2011.96.[Crossref][WoS]
  • 12. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D, Nguyen, S.T. & Ruoff, R.S. (2006). Graphene-based composite materials, Nature 442 (7100), 282-286. DOI:10.1038/nature04969.[Crossref]
  • 13. Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X., Ruoff, R.S., Nguyen, S.T, Aksay, I.A., Prud’Homme, R.K. & Brinson, L.C. (2008). Functionalized graphene sheets for polymer nanocomposites, Natur. Nanotech. 3(6), 327-331. DOI: 10.1038/nnano.2008.96.[Crossref]
  • 14. Lee, C., Wei, X., Kysar, J.W. & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887), 385-388. DOI: 10.1126/ science.1157996.[Crossref]
  • 15. Kim, I.H. & Jeong, Y.G. (2010). Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity, J. Polym. Sci. Part B: Polym. Phys. 48(8), 850-858. DOI: 10.1002/polb.21956.[Crossref][WoS]
  • 16. Zhang, M., Li, D.J., Wu, D.F., Yan, C.H., Lu, P. & Qiu, G.M. (2008). Poly(ethylene terephthalate)/expanded graphite conductive composites: structure, properties, and transport behavior, J. Appl. Polym. Sci. 108 (3), 1482-1489. DOI: 10.1002/ app.27745.[Crossref]
  • 17. Zhang, H.B., Zheng, W.G., Yan, Q., Yang, Y., Wang, J.W., Lu, Z.H., Ji, G.Y. & Yu, Z.Z. (2010). Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polym. 51(5), 1191-1196. DOI: 10.1016/j. polymer.2010.01.027.[Crossref]
  • 18. Szymczyk, A. (2009). Structure and properties of new polyester elastomers composed of poly(trimethylene terephthalate) and poly(ethylene oxide). Eur. Polym. J. 45, 2653-2664. DOI: 10.1016/j.eurpolymj.2009.05.032.[Crossref]
  • 19. Anand, K.A., Agarwal, U.S. & Joseph, R. (2007). Carbon nanotubes-reinforced PET nanocomposite by meltcompounding. J. Appl. Polym. Sci. 104(5), 3090-3095. DOI :10.1002/app.25674.[Crossref]
  • 20. Wunderlich, B. (1980). Macromolecular Physics (3 rd Ed.). New York, USA: Academic Press.
  • 21. Kim, J.Y., Han, S.I. & Hong, S. (2008). Effect of Modified Carbon Nanotube on the Properties of Aromatic Polyester Nanocomposites. Polym. 49, 3335-3345. DOI:10.1016/j. polymer.2008.05.024.[Crossref]
  • 22. Spiros, T., Drakonakis, V., Mouzakis, D.E., Fischer, D. & Gregoriou, V.G. (2006). Effect of Carboxy-Functionalized Multiwall Nanotubes (MWNT−COOH) on the Crystallization and Chain Conformations of Poly(ethylene terephthalate) PET in PET−MWNT Nanocomposites. Macromol. 39, 9150-9156. DOI: 10.1021/ma0613584.[Crossref]
  • 23. Godovsky, Y.K., Slonimsky, G.L. & Garbar, N.M. (1972). Effect of molecular weight on the crystallization and morphology of poly(ethylene oxide) fractions. J. Polym. Sci.: Part C 38(1), 1-21. DOI: 10.1002/polc.5070380103.[Crossref]
  • 24. Lopez, L.C. & Wilkes, G.L. (1988). Crystallization kinetics of poly(p-phenylene sulphide): effect of molecular weight. Polym. 29, 106-113. DOI: 10.1016/0032-3861(88)90207-8.[Crossref]
  • 25. Krikorian, V. & Kochan, D.J. (2005). Crystallization Behavior of Poly(l-lactic acid) Nanocomposites: Nucleation and Growth Probed by Infrared Spectroscopy. Macromol. 38(15), 6520-6527. DOI: 10.1021/ma050739z.[Crossref]
  • 26. Hu, X., An, H., Li, Z. &Yang, L. (2009). Origin of Carbon Nanotubes Induced Poly(l-Lactide) Crystallization: Surface Induced Conformational Order. Macromol. 42(8), 3215-3218. DOI: 10.1021/ma802758k.[Crossref]
  • 27. Zhang, J., Duan, Y., Sato, H., Tsuji, H., Noda, I., Yan, S.K. & Ozaki, Y. (2005). Crystal Modifications and Thermal Behavior of Poly (L -lactic acid) Revealed by Infrared Spectroscopy. Macromol. 38(19), 8012-8021. DOI: 10.1021/ma051232r. [Crossref]
  • 28 Kim, J.Y. & Kim, S.H. (2012). Nanocomposites - New Trends and Developments, InTech, Retrieved October 2012, from InTech DTP team. DOI: 10.5772/50413.[Crossref]
  • 29. Kim, J.Y., Han, S.I. & Kim, S.H. (2007). Crystallization Behavior and Mechanical Properties of Poly(ethylene-2,6- naphthalate)/Multiwall Carbon Nanotube Nanocomposites. Polym. Eng. Sci. 47, 1715-1723. DOI:10.1002/pen.20789.
  • 30. Kim, J.Y. (2009). The Effect of Carbon Nanotube on the Physical Properties of Poly(butylene terephthalate) Nanocomposite by Simple Melt Blending. J. Appl. Polym. Sci.112(5), 2589-2600. DOI: 10.1002/app.29560.[Crossref]
  • 31. Kim, J.Y., Ki, D.K. & Kim, S.H. (2009). Effect of Modified Carbon Nanotube on Physical Properties of Thermotropic Liquid Crystal Polyester Nanocomposites. Eur. Polym. J. 45(2), 316-324. DOI: 10.1016/j.eurpolymj.2008.10.043. [Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.