PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 3 | 97-105
Tytuł artykułu

The Formation of Polycomplexes of Poly(Methyl Vinyl Ether-Co-Maleic Anhydride) and Bovine Serum Albumin in the Presence of Copper Ions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The binary and ternary complex formations of poly(methyl vinyl ether-co-maleic anhydride) (PMVEMA) with copper ions and with bovine serum albumin (BSA) in the presence of copper ions in phosphate buffer solution at pH = 7 were examined by the techniques of UV-visible, fluorescence, dynamic light scattering, atomic force microscopy measurements. In the formation of binary complexes of PMVEMA-Cu(II), the addition of copper ions to the solution of PMVEMA in phosphate buffer solution at pH = 7 forms homogeneous solutions when the molar ratio of Cu(II)/MVEMA is 0.5. Then the formations of ternary complexes of PMVEMA-Cu(II)-BSA were examined. Study analysis revealed that the toxicities of polymer-metal and polymer-metal-protein mixture solutions depend on the nature and ratio of components in mixtures.
Wydawca

Rocznik
Tom
16
Numer
3
Strony
97-105
Opis fizyczny
Daty
wydano
2014-09-01
online
2014-10-03
Twórcy
  • Üsküdar University, Faculty of Engineering and Natural Sciences, Department of Bioengineering, 34662 Uskudar-Istanbul, Turkey, mesut.karahan@uskudar.edu.tr
  • Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, 34220 Esenler-Istanbul Turkey
  • Istanbul University, Faculty of Engineering, Department of Chemistry, 34320 Avcılar-Istanbul Turkey
Bibliografia
  • 1. Mustafaev, M.I. (1996). Biyopolimerler (Biopolymers), Kocaeli, Turkey: TUBITAK Publishers.
  • 2. Karahan, M., Mustafaeva, Z. & Özeroğlu, C. (2010). Investigation of Ternary Complex Formations of Polyacrylic Acid with Bovine Serum Albumin in the Presence of Metal Ions by Fluorescence and Dynamic Light Scattering Measurements. Protein J. 29, 336-342. DOI: 10.1007/s10930-010-9257-1. [Crossref]
  • 3 . Karahan, M. (2009). Development Of Functional Biopolymer Systems Containing Metal. Unpublished doctoral dissertation, Yildiz Technical University, Turkey.
  • 4. Mustafaev, M.I. & Norimov, A.S. (1990). Polymer-Metal Complexes of Protein Antigens- New Highly Effective Immunogens. Biomed. Sci. 1, 274-278.
  • 5. Mustafaev, M.I., Yücel, F., Cırakoglu, B. & Bermek, E. (1996). Immune Response to Progesterone Involved in Cu2+- -mediated Polyanion-Protein Complex-Antigen Specificity and Affinity of Hybridoma clones. Polymer-Metal Complexes of Protein Antigens- New Highly Effective Immunogens. Immunol. Lett. 52, 63-68.[Crossref]
  • 6. Dincer, B., Mustafaev, M.I. & Bayülken, S. (1997). High- -performance liquid chromatography study of water-soluble ternary polyacrylamide-metal-protein complexes. J Appl. Polym. Sci. 65, 37-40.[Crossref]
  • 7. Shoukry, M.M., Khairy, E.M. & El-Sherif, A.A. (2002). Ternary complexes involving copper(II) and amino acids, peptides and DNA constituents. The kinetics of hydrolysis of a-amino acid esters. Transit. Metal Chem. 27, 656-664. DOI: 10.1023/A:1019831618658.[Crossref]
  • 8. Etaiw, S.E.D.H., Sultan, A.S. & El-Bendary, M.M. (2011). In vitro and in vivo antitumor activity of novel 3D-organotin supramolecular coordination polymers based on CuCN and pyridine bases. J. Organomet. Chem. 696, 1668-1676. DOI: 10.1016/j.jorganchem. 2011.02.003.[WoS][Crossref]
  • 9. Andrianov, A.K., Marin, A. & DeCollibus, D.P. (2011). Microneedles with intrinsic immunoadjuvant properties: microfabrication, protein stability, and modulated release. Pharm. Res. 28, 58-65. DOI: 10.1007/s11095-010-0133-7.[Crossref][WoS]
  • 10. Ding, N.W., Lin, W.H., Sun, W.L. & Shen, Z.Q. (2011). A novel hyperbranched aromatic polyamide containing bithiazole: synthesis, metal complexation and magnetic properties. Sci. China-Chem. 54(2), 320-325. DOI: 10.1007/s11426-010-4211-9.[Crossref][WoS]
  • 11. Zhao, X.Z., Jiang, T., Wang, L., Yang, H., Zhang, S. & Zhou, P. (2010). Interaction of curcumin with Zn (II) and Cu (II) ions based on experiment and theoretical calculation. J. Mol. Struct. 1(3), 316-325. DOI: 10.1016/j.molstruc.2010.09.049.[Crossref]
  • 12. Kendirch, M.J., May, M.T., Philshica, M.J. & Dobinson, K.D. (1992). Metal in biological systems, New York, Ellis Harwood.
  • 13. Ali, M.M., Frei, E., Straubb, J., Breuerb, A. & Wiesslerb, M. (2002). Induction of metallothionein by zinc protects from daunorubicin toxicity in rats. Toxicology 179, 85-93. DOI: 10.1016/S0300-483X(02)00322-0.[Crossref]
  • 14. Wang, R.M., He, N.P., Song, P.F., He, Y.F., Ding, L. & Lei, Z. (2009). Preparation of low-molecular-weight chitosan derivative zinc complexes and their effect on the growth of liver cancer cells in vitro. Pure Appl. Chem. 81(12), 2397-2405. DOI: 10.1351/PAC-CON-08-11-15.[Crossref][WoS]
  • 15. Mustafaev, M.I., Norimov, A.Sh. & Petrov, R.V. (1992). Sintheticeskiye immunomodulytari (Synthetic Immunomodulators). Moskova, Nauka.
  • 16. Mustafaev, M. (2004). Functionally Biopolymer Systems. Sigma, J. Engineer. Natur. Sci. 4, 1-200.
  • 17. Akkiliç, N., Mustafaeva, Z. & Mustafaev, M. (2007). High performance liquid chromatography study of water-soluble complexes and covalent conjugates of polyacrylic acid with bovine serum albumin. J. Appl. Polym. Sci. 105, 3108-3120. DOI: 10.1002/app. 26366.[Crossref][WoS]
  • 18. Topuzogulları, M., Cimen, N.S., Mustafaeva, Z. & Mustafaev, M. (2007). Molecular-weight distribution and structural transformation in water-soluble complexes of poly(acrylic acid) and bovine serum albumin. Eur. Polym. J. 43, 2935-2946. DOI: 10.1186/1423-0127-20-35.[WoS][Crossref]
  • 19. Nilsson, K.P.R., Herland, A., Hammarstrom, P. & Inganas, O. (2005). Conjugated polyelectrolytes: Conformation-sensitive optical probes for detection of arnyloid fibril forrnation. Biochem. 44, 3718-3724. DOI: 10.1021/bi047402u.[Crossref]
  • 20. Xian, W.J., Tang, J.X., Janmey, P.A. & Braunlin, W.H. (1999). The polyelectrolyte behavior of actin filaments: A Mg-25 NMR study. Biochem. 38, 7219-7226, DOI: 10.1021/bi982301f.[Crossref]
  • 21. Sotiropoulou, M., Bokias, G. & Staikos, G. (2005). Water- soluble complexes through coulombic interactions between bovine serum albumin and anionic polyelectrolytes grafted with hydrophilic nonionic side chains. Biomacromolecules 6(4), 1835-1838. DOI: 10.1021/bm050061v.[Crossref]
  • 22. Kabanov, V.A. (2004). From synthetic polyelectrolytes to polymer subunit vaccines. Pure Appl. Chem. 76 (9), 1659-1677.
  • 23. Nandakumar, K.S., Muthukkaruppan, V.R. (1999). Infl uence of Immunopotentiators on the Antiporin Immunoglobulin G Subclass: Distribution and Protective Immunity Against Murine Salmonellosis. Scand. J. Immunol. 50(2), 188-194. DOI: 10.1046/j.1365-3083. 1999.00576.x.[Crossref]
  • 24. Karahan, M., Tuğlu, S. & Mustafaeva, Z. (2012). Synthesis of microwave-assisted poly(methyl vinyl ether-co- -maleic anhydride)-bovine serum albumin bioconjugates. Artif. Cells. Blood Substit. Biotech. 40(6), 363-368. DOI: 10.3109/10731199.2012.678942.[WoS][Crossref]
  • 25. Filenko, A., Demchenko, M., Mustafaeva, Z., Yoshihito, O. & Mustafaev, M.I. (2001). Fluorescens Study of Cu2+-Induced Interaction Between Albumin and Anionic Polyelectrolytes. Biomacromolecules 2(1), 270-277. DOI: 10.1021/bm000111q.[Crossref]
  • 26. Mustafaev, M.I., Saraç, A.S. & Erkol, A.Y. (1996). Effects of Cu2+ on Stability and Composition of Water Soluble Ternary Polyacrylic Acid-Cu2+-Protein Complexes Against Radiation Damage. Polymer Bulletin 36(5), 623-627.[Crossref]
  • 27. Mustafaev, M.I., Yucel, F., Ozturk, S., Çirakoglu, B. & Bermek, E. (1996). Cu2+-mediated Complex Formation Between Polyacrylic Acid (PAA) and Bovine Serum Albumin. J. Immunol. Methods 197(1-2), 31-37. DOI:10.1016/0022-1759(96)00107-X.[Crossref]
  • 28. Karahan, M., Mustafaeva, Z. & Ozer, H. (2007). Polysaccharide- protein Covalent Conjugates and Ternary Metal Complexes. Asian J. Chem. 19, 1837-1845.
  • 29. Hilgers, L.A. Th., Nicolas, I., Lejeune, G., Dewil, E., Strebelle, M. & Boon, B. (1998). Alkyl-esters of polyacrylic acid as vaccine adjuvants. Vaccine 16(16), 1575-1581. DOI: 10.1016/S0264-410X(98)00047-4.[Crossref]
  • 30. Kennedy, Y.F. (1979). The tate and lyle carbohydrate chemistry award lecture. transition-metal oxide chelates of carbohydrate-directed macromolecules. Chem. Soc. Rev. 8, 221-228.[Crossref]
  • 31. Sarkar, B. & Wigfield, Y. (1968). Evidence for albumin- Cu(II)-amino acid ternary complex. Can. J. Biochem. 46, 601-607.[Crossref]
  • 32. Zeng, W., Wang, L., Lin, S., Liu, S., Beuerman, R. & Cao, D. (2011). Fluorescence enhancement of cationic diacetylene- contained polyelectrolyte by anions and cations and application for sensitive and selective detection of Hg(2+). J. Polym. Sci. B-Polym. Phys. 49(23), 1690-1694. DOI: 10.1002/ polb.22362.[Crossref][WoS]
  • 33. Wang, Y., Dong, J., Liu, C., Bao, B., Wang, L., Zhan, X., Yang, H. & Wang, G. (2011). Fluorescence study of interaction between an anionic conjugated polyelectrolyte and bovine serum albumin. Polym. Bull. 67, 1907-1915, DOI: 10.1007/ s00289-011-0577-x.[Crossref][WoS]
  • 34. Burstein, E.A., Vedenkina, N.S. & Ivkova, M.N. (1973). Fluorescence and the location of tryptophan residues in protein molecules. Photochem. Photobiol. 18(4), 263-279. DOI: 10.1111/j.1751-1097.1973.tb06422.x.[Crossref]
  • 35. Peters, T. (1996). All about albumin: biochemistry, genetics and medical applications. San Diego, Academic Press.
  • 36. Douglas, J.T., Marilyn, P.W., Anthony, S.Q., Jacob, H.R., Edwin, G.B. & Burton, E.S. (2008). Imaging Aspects of Cardiovascular Disease at the Cell and Molecular Level. Histochem. Cell. Biol. 130, 235-245. DOI: 10.1007/s00418-008-0444-5.[WoS][Crossref]
  • 37. Nuno, C.S. & Miguel, A.R.B.C. (2004). An Overview of the Biophysical Applications of Atomic Force Microscopy. Biophys. Chem. 107(2), 133-149. DOI: 10.1016/ j.bpc. 2003.09.001.[Crossref]
  • 38. Miyagi, A., Ando, T. & Lyubchenko, Y.L. (2011). Dynamics of Nucleosomes Assessed with Time-Lapse High-Speed Atomic Force Microscopy. Biochemistry 50, 7901-7908. DOI: 10.1021/bi200946z.[WoS][Crossref]
  • 39. Cui, Y., Oh, Y.J., Lim, J., Youn, M., Lee, I., Pak, H.K., Park, W., Jo, W. & Park, S. (2012). AFM study of the differential inhibitory effects of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria. Food Microbiol. 29(1), 80-87. DOI: 10.1016/j.fm.2011.08.019.[Crossref]
  • 40. Liu, Y.F., Han, F.F., Xie, Y.G. & Wang, Y.Z. (2011). Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Biometals 24(6), 1069-1078. DOI: 10.1007/s10534-011-9465-y.[WoS][Crossref]
  • 41. Elter, P., Lange, R. & Beck, U. (2012). Atomic force microscopy studies of the infl uence of convex and concave nanostructures on the adsorption of fibronectin. Coll. Surf. B-Biointer. 89, 139-146. DOI: 10.1016/j.colsurfb.2011.09.021.[Crossref]
  • 42. Lakowich, J.R. (1986). Principles of fl uorescence spectroscopy. New York, Plenum Press.
  • 43. Karahan, M., Mustafaeva, Z., Çakır Koç, R., Bağırova, M., Allahverdiyev, A. (2014). Investigation of Metal-Polyelectrolyte complexes Toxicity. Toxic. Ind. Heal. 30(4), 384-389. DOI: 10.1177/0748233712457446. [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0058
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.