Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 2 | 99-105
Tytuł artykułu

High Pressure Synthesis versus Calcination – Different Approaches to Crystallization of Zirconium Dioxide

Treść / Zawartość
Warianty tytułu
Języki publikacji
Calcination and microwave-assisted hydrothermal processing of precipitated zirconium dioxide are compared. Characterization of synthesized products of these two technologies is presented. The infiuence of thermal treatment up to 1200oC on the structural and spectroscopic properties of the so-obtained zirconium dioxide is examined. It was found that initial crystallization of material inhibits the crystal growth up to the 800oC (by means of XRD and TEM techniques), while the material crystallized from amorphous hydroxide precursor at 400oC, exhibits 26 nm sized crystallites already. It was found using the TG technique that the temperature range 100–200oC during the calcination process is equivalent to a microwave hydrothermal process by means of water content. Mass loss is estimated to be about 18%. Based on X-ray investigations it was found that the initial hydroxide precursor is amorphous, however, its luminescence activity suggests the close range ordering in a material.
Opis fizyczny
  • Institute of Physics of the Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland ,
  • Institute of Physics of the Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • Institute of Physics of the Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
  • 1. Byrappa, K. & Adschiri, T. (2007). Hydrothermal technology for nanotechnology, Prog. Cryst. Growth Ch. 53, 117–166. DOI: 10.1016/j.pcrysgrow.2007.04.001.[Crossref]
  • 2. Zhu, X.H. & Hang, Q.M. (2013). Microscopical and physical characterization of microwave and microwave-hydrothermal synthesis products, Micron 44, 21–44. DOI: 10.1016/j. micron.2012.06.005.[Crossref][WoS]
  • 3. Riman, R.E., Suchanek, W.L. & Lencka, M.M. (2002). Hydrothermal crystallization of ceramics, Ann. Chim. Sci. Mat. 27 (6), 15–36. DOI: 10.1016/S0151-9107(02)90012-7.[Crossref]
  • 4. Byrappa, K. & Yoshimura, M. (2000). Handbook of hydrothermal technology, William Andrew Publishing, Waltham, USA.
  • 5. Franck, E.U. (1970). Water and aqueous solutions at high pressures and temperatures, Pure Appl. Chem. 24, 13–30. DOI: 10.1351/pac197024010013.[Crossref]
  • 6. Franck, E.U. (1973). Properties of water, Int. Corros. Conf. Ser., 109–116.
  • 7. Kornarneni, S., Li, Q., Stefansson, K.M. & Roy, R. (1993). Microwave-hydrothermal processing for synthesis of electroceramic powders, J. Mater. Res. 8, 3176–3183. DOI: 10.1557/JMR.1993.3176.[Crossref]
  • 8. Roy, R. (1994). Acceleration the kinetics of low-temperature inorganic syntheses, J. Solid State Chem. 111, 11–17. DOI:10.1006/jssc.1994.1192.[Crossref]
  • 9. Switzer, J.A., Hung, C.J., Breyfogle, M., Shumsky, M.G., Vanleeuwen, R. & Golden, T.D. (1994). Electrodeposited Defect Chemistry Superlattices, Science 264, 1573–1576. DOI: 10.1126/science.264.5165.1573.[Crossref]
  • 10. Suchanek, W.L., Shuk, P., Byrappa, K., Riman, R.E., TenHuisen, K.S. & Janas, V.F. (2002). Mechanochemical–hydrothermal synthesis of carbonated apatite powders at room temperature, Biomaterials 23, 699–710. DOI: 10.1016/S01429612(01)00158-2.[Crossref]
  • 11. Puippe, J.C., Acosta, R.E. & von Gutfeld, R.J. (1981). Investigation of laser enhanced electroplating mechanisms, J. Electrochem. Soc. 128, 2539–2545. DOI: 10.1149/1.2127287.[Crossref]
  • 12. Kumar, A. & Roy., R. (1988). RESA-A wholly new process for fine oxide powder preparation, J. Mater. Res. 3(6), 1373–1377. DOI: 10.1557/JMR.1988.1373.[Crossref]
  • 13. Ehrlich, H., Simon, P., Motylenko, M., Wysokowski, M., Bazhenov, V.V., Galli, R., Stelling, A.L., Stawski, D., Ilan, M., Stöcker, H., Abendroth, B., Born, R., Jesionowski, T., Kurzydłowski, K.J. & Meyer, D.C. (2013). Extreme Biomimetics: formation of zirconium dioxide nanophase using chitinous scaffolds under hydrothermal conditions, J. Mater. Chem. B 2013, 1, 5092–5099. DOI: 10.1039/C3TB20676A.[WoS][Crossref]
  • 14. Wysokowski, M., Motylenko, M., Bazhenov, V.V., Stawski, D., Petrenko, I., Ehrlich, A., Behm, T., Kljajic, Z., Stelling, A.L., Jesionowski, T. & Ehrlich, H. (2013). Poriferan chitin as a template for hydrothermal zirconia deposition, Front. Mater. Sci. 7(3), 248–260. DOI:10.1007/s11706-013-0212-x.[Crossref][WoS]
  • 15. Wysokowski, M., Motylenko, M., Stöcker, H., Bazhenov, V.V., Langer, E., Dobrowolska, A., Czaczyk, K., Galli, R., Stelling, A.L., Behm, T., Klapiszewski, Ł., Ambrożewicz, D., Nowacka, M., Molodtsov, S.L., Abendroth, B., Meyer, D.C., Kurzydłowski, K.J., Jesionowski, T. & Ehrlich, H. (2013). An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites, J. Mater. Chem. B 1, 6469–6476. DOI: 10.1039/C3TB21186J.[Crossref][WoS]
  • 16. Opalińska, A., Pielaszek, R., Łojkowski, W., Leonelli, C., Matysiak, H., Wejrzanowski, T. & Kurzydłowski, K.J. (2010). Grain size and grain size distribution of Pr-doped zirconia nanopowders determined by different methods, Materiały Ceramiczne 62, 550–555.
  • 17. Komarneni, S., Hussein, M.Z., Liu, C., Breval, E. & Malla, P.B. (1995). Microwave-hydrothermal processing of metal clusters supported in and/or on montmorillonite, Eur. J. Solid State Inorg. Chem. 32, 837–849.
  • 18. Lin, C., Zhang, C. & Lin, J. (2007). Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the Pechini-type sol-gel process, J. Phys. Chem. C 111, 3300–3307. DOI: 10.1021/jp066615l.[Crossref][WoS]
  • 19. Sridhar, K.R. & Blanchard, J.A. (1999). Electronic conduction in low oxygen partial pressure measurements using an amperometric zirconia oxygen sensor, Sensor. Actuator. B-Chem. 59, 60–67. DOI:10.1016/S0925-4005(99)00233-6.[Crossref]
  • 20. French, R.H., Glass, S.J., Ohuchi, F.S., Xu, Y.N. & Ching, W.Y. (1994). Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2, Phys. Rev. B 49 (8), 5133–5142. DOI:10.1103/ PhysRevB.49.5133.[Crossref]
  • 21. Li, Q., Ai, D., Dai, X. & Wang, J. (2003). Photoluminescence of nanometer zirconia powders, Powder Technol. 137, 34–40. DOI: 10.1016/j.powtec.2003.08.028.[Crossref]
  • 22. Feng, Z., Postula, W.S., Akgerman, A. & Anthony, R.G. (1995). Characterization of zirconia-based catalysts prepared by precipitation, calcination and modified sol-gel methods, Ind. Eng. Chem. Res. 34, 78–82. DOI: 10.1021/ie00040a005.[Crossref]
  • 23. Somiya, S. & Akiba, T. (1999). Hydrothermal zirconia powders: A bibliography, J. Eur. Ceram. Soc. 19, 81–87. DOI: 10.1016/S0955-2219(98)00110-1.[Crossref]
  • 24. Amberg, M. & Gunter, J.R. (1996). Metastable cubic and tetragonal zirconium dioxide, prepared by thermal oxidation of the dichalcogenides, Solid State Ionics 84, 313–321. DOI: 10.1016/0167-2738(96)00020-3.[Crossref]
  • 25. Kaddouri, A., Mazzocchia, C., Tempesti, E. & Anouchinsky, R. (1998). On the activity of ZrO2 prepared by different methods, J. Therm. Anal. 53, 97–109. DOI: 10.1023/A:1010110024557.[Crossref]
  • 26. McNaught, A. D. & Wilkinson, A. (1997). IUPAC Compendium of chemical terminology, 2nd ed. Blackwell Scientific Publications, Oxford.
  • 27. Kornarneni, S., Roy, R. & Li, Q.H. (1992). Microwave-hydrothermal synthesis of ceramic powders, Mat. Res. Bull. 27, 1393–1405. DOI: 10.1016/0025-5408(92)90004-J.[Crossref]
  • 28. Bondioli, F., Leonelli, C., Manfredini, T., Ferrari, A.M., Caracoche, M.C., Rivas, P.C. & Rodriguez, A.M. (2005). Microwave-hydrothermal synthesis and hyperfine characterization of praseodymium-doped nanometric zirconia powders, J. Am. Ceram. Soc. 88 (3), 633–638. DOI: 10.1111/j.1551-2916.2005.00093.x.[Crossref]
  • 29. Smits, K., Grigorjeva, L., Millers, D., Sarakovskis, A., Opalinska, A., Fidelus, J.D. & Łojkowski, W. (2010). Europium doped zirconia luminescence, Opt. Mater. 32, 827–831. DOI: 10.1016/j.optmat.2010.03.002.[WoS][Crossref]
  • 30. Mingos, D.M.P. (1994). The applications of microwaves in chemical syntheses, Res. Chem. Intermed. 20, 85–91. DOI: 10.1163/156856794X00090.[Crossref]
  • 31. Garvie, R.C. (1978). Stabilization of the tetragonal structure in zirconia microcrystals, J. Phys. Chem. 82 (2), 218–224. DOI: 10.1021/j100491a016.[Crossref]
  • 32. Mondal, A. & Ram, S. (2004). Reconstructive phase formation of ZrO2 nanoparticles in a new orthorhombic crystal structure from an energized porous ZrO(OH)2·xH2O precursor, Ceram. Int. 30, 239–249. DOI: 10.1016/S0272-8842(03)00095-6.
  • 33. Smits, K., Grigorjeva, L., Millers, D., Sarakovskis, A., Grabis, J. & Łojkowski, W. (2011). Intrinsic defect related luminescence in ZrO2, J. Lumin. 131, 2058–2062. DOI: 10.1016/j. jlumin.2011.05.018.[WoS]
  • 34. Guo, G.Y., Chen, Y.L. & Ying, W.J. (2004). Thermal, spectroscopic and X-ray diffractional analyses of zirconium hydroxides precipitated at low pH values, Mater. Chem. Phys. 84, 308–314. DOI: 10.1016/j.matchemphys.2003.10.006.[Crossref]
  • 35. Zhang, Y.L., Jin, X.J., Rong, Y.H., Hsu, T.Y., Jiang, D.Y. & Shi, J.L. (2006). The size dependence of structural stability in nano-sized ZrO2 particles, Mater. Sci. Eng. A 438–440, 399–402. DOI: 10.1016/j.msea.2006.03.109.[Crossref]
  • 36. Glushkova, V.B. & Lapshin, A.N. (2003). Specific features in the behavior of amorphous zirconium hydroxide: I. Sol–gel processes in the synthesis of zirconia, Glass Phys. Chem. 29, 415–421. DOI: 10.1023/A:1025137313344.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.