Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 2 | 87-94
Tytuł artykułu

Removal of Ni2+from Aqueous Solutions by Adsorption Onto Magnetic Multiwalled Carbon Nanotube Nanocomposite

Treść / Zawartość
Warianty tytułu
Języki publikacji
The removal of Ni2+ from aqueous solution by magnetic multiwalled carbon nanotube nanocomposite (MMWCNTs-C) was investigated. MMWCNTs-C was characterized by X-ray Diffraction method (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), surface area (BET), and Fourier Transform-Infrared Spectroscopy (FTIR). The effects of initial concentration, contact time, solution pH, and temperature on the Ni2+ adsorption onto MMWCNTs-C were studied. The Langmuir and Freundlich isotherm models were applied to fit the adsorption data. The results showed that the adsorption isotherm data were fitted well to the Langmuir isotherm model with the maximum monolayer adsorption capacity of 2.11 mg g–1. The adsorption kinetics was best described by the pseudo-second-order model. The thermodynamic parameters, such as ΔHo, ΔGo and ΔSo, were also determined and evaluated. The adsorption of Ni2+ is generally spontaneous and thermodynamically favorable. The values of ΔHo and ΔGo indicate that the adsorption of Ni2+ onto MMWCNTs-C was a physisorption process.

Opis fizyczny
  • Maritime University of Szczecin, Department of Integrated Transport Technology and Environmental Protection, Henryka Pobożnego 11, 70-507 Szczecin, Poland,
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
  • 1. Krishna, R.H. & Swamy, A. (2011). Kinetic and isotherm modeling of adsorption of Ni (II) form aqueous solutions onto powder of papaya seeds. Int. J. Sci. Res. Publ. 1(1), 1–6.
  • 2. Al-Asheh, S., Banat, F. & Mobai, F. (1999). Sorption of copper and nickel by spent animal bones. Chemosphere 39(12), 2087–2096.[Crossref]
  • 3. Vijayaraghavan, K., Jegan, J., Palanivelu, K. & Velan, M. (2004). Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J. Hazard. Mater. B113, 223–230. DOI: 10.1016/j.jhazmat.2004.06.014.[Crossref]
  • 4. Vijayaraghavan, K., Jegan, J., Palanivelu, K. & Velan, M. (2005). Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Sep. Purif. Technol. 44, 53–59. DOI: 10.1016/j.seppur.2004.12.003.[Crossref]
  • 5. Panneerselvam, P., Morad, N. & Tan, K.A. (2011). Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J. Hazard. Mater. 186, 160–168. DOI: 10.1016/j.jhazmat.2010.10.102.[Crossref][WoS]
  • 6. Hasar, H. (2003). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. 97, 49–57. DOI: 10.1016/s0304-3894(02)00237-6.[Crossref]
  • 7. Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J. & Serarols, J. (2006). Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50, 132–140. DOI: 10.1016/j.seppur.2005.11.016.[Crossref]
  • 8. Rao, M., Parwate, A.V. & Bhole, A.G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manage. 22, 821–830.[Crossref]
  • 9. Tofighy, M.A. & Mohammadi, T. (2011). Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J. Hazard. Mater. 185, 140–147. DOI: 10.1016/j. jhazmat.2010.09.008.[WoS][Crossref]
  • 10. Li, Y.H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wu, D. & Wei, B. (2003). Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41, 2787–2792. DOI: 10.1016/S00086223(03)00392-0.
  • 11. Gao, Z., Bandosz, T.J., Zhao, Z., Han, M. & Qiu, J. (2009). Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167, 357–365. DOI: 10.1016/j.jhazmat.2009.01.050.[WoS][Crossref]
  • 12. Kandah, M.I. & Meunier, J.L. (2007). Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater. 146(1–2), 283–288. DOI: 10.1016/j.jhazmat.2006.12.019.[Crossref][WoS]
  • 13. Yang, S., Li, J., Shao, D., Hu, J. & Wang, X. (2009). Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166, 109–116. DOI: 10.1016/j.jhazmat.2008.11.003.[WoS][Crossref]
  • 14. Chen, C., Hu, J., Shao, D., Li, J. & Wang, X. (2009). Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater. 164, 923–928. DOI: 10.1016/j.jhazmat.2008.08.089.[Crossref][WoS]
  • 15. Jeon, S., Yun, J., Lee Y.S. & Kim, H.I. (2010). Removal of Cu(II) ions by Alginate/Carbon Nanotube/Maghemite Composite Magnetic Beads. Carbon Lett. 11(2), 117–121.[Crossref]
  • 16. Gupta, V.K., Agarwal, S. & Saleh, T.A. (2011). Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res. 45(6), 2207–2212. DOI: 10.1016/j.watres.2011.01.012.[WoS][Crossref]
  • 17. Ma, J., Zhu, Z., Chen, B., Yang, M., Zhou, H., Li, C., Yu, F. & Chen, J. (2013). One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal. J. Mater. Chem. A 1, 4662–4666. DOI: 10.1039/C3TA10329C.[Crossref]
  • 18. Peng, X., Luan, Z., Di, Z., Zhang, Z. & Zhu, C. (2005). Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(II) and Cu(II) from water. Carbon 43(4), 880–883. DOI: 10.1016/j.carbon.2004.11.009.[Crossref]
  • 19. Pełech, I. (2010). Preparation of carbon nanotubes using CVD method. Pol. J. Chem. Tech. 12(3), 45–49. DOI: 10.2478/ v10026-010-0033-y.[Crossref]
  • 20. Vijayaraghavan, K., Won, S.W. & Yun, Y.S. (2009). Treatment of complex Remazol dye effiuent using sawdust- and coal-based activated carbons. J. Hazard. Mater. 167, 790–796. DOI: 10.1016/j.jhazmat.2009.01.055.[WoS][Crossref]
  • 21. Sykuła-Zając, A., Turek, M., Mathew, M.P., Patai, F., Horvat, M. & Jabłońska, J. (2010). Determination of nickel in tea by using dimethylglyoxime method. Scientific Bulletin of the Technical University of Lodz. Food Chemistry and Biotechnology 74(1081), 5–11.
  • 22. Konicki, W., Pełech, I., Mijowska, E. & Jasińska, I. (2013). Adsorption Kinetics of Acid Dye Acid Red 88 onto Magnetic Multi-Walled Carbon Nanotubes-Fe3C Nanocomposite. Clean-Soil, Air, Water. In press. DOI: 10.1002/clen.201200458.[Crossref]
  • 23. Chairat, M., Rattanaphani, S. & Bremner, J.B., Rattanaphani, V. (2008). Adsorption kinetic study of lac dyeing on cotton. Dyes Pigm. 76, 435–439. DOI: 10.1016/j.dyepig.2006.09.008.[Crossref]
  • 24. Kumar, P.S. & Kirthika, K. (2009). Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder. J. Eng. Sci. Technol. 4(4), 351–363.
  • 25. Ai, L., Zhou, Y. & Jiang, J. (2011). Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination 266, 72–77. DOI: 10.1016/j.desal.2010.08.004.[WoS][Crossref]
  • 26. Kapoor, A. & Viraragavan, T. (1998). Heavy metal biosorption sites in Aspergillus Niger. Bioresour. Technol. 61, 221–227.
  • 27. Kadivelu, K., Thamariselvi, K. & Namasivayam, C. (2001). Adsorption of Ni(II) from aqueous solution onto activated carbon prepared from Coirpith. Sep. Purif. Technol. 124, 497–505.
  • 28. Suemitsu, R., Uenishi, R., Akashi, I. & Kakano, M. (1986). The use of dyestuff-treated rice hulls for removal of heavy metals from wastewater. J. Appl. Polym. Sci. 31, 74–83.
  • 29. Al-Rub, F.A.A., Kandah, M. & Aldabaibeh, N. (2002). Nickel removal from aqueous solution by using sheep Manure Waste. Eng. Life Sci. 2, 111–116. DOI: 10.1002/16182863(200204).[Crossref]
  • 30. Padmavathy, V. (2008). Biosorption of Ni(II) ions on Baker’s yeast: kinetic, thermodynamic and desorption studies. Bioresour. Technol. 99, 3100–3109. DOI: 10.1016/j. biortech.2007.05.070.[WoS][Crossref]
  • 31. Ho, Y.S., Jhonwase, D.A. & Forster, C.F. (1995). Batch nickel removal from aqueous solution by Sphagnum moss peat. Water Res. 29, 1327–1332.[Crossref]
  • 32. Ewecharoen, A., Thiravetyan, P. & Nakbanpote, W. (2008). Comparison of nickel adsorption form electroplating rinse water by coir pith and modified coir pith. Chem. Eng. J. 137, 181–188. DOI: 10.1016/j.cej.2007.04.007.[Crossref]
  • 33. Huang, C., Ying-Chien, C. & Ming-Ren, L. (1996). Adsorption of Cu(II) and Ni(II) by palletized biopolimer. J. Hazard. Mater. 45, 265–267.[Crossref]
  • 34. Sharma, Y.C. & Srivastava, V. (2010). Separation of Ni(II) ions from aqueous solutions by magnetic nanoparticles. J. Chem. Eng. Data 55, 1441–1442. DOI: 10.1021/je900619d.[Crossref][WoS]
  • 35. Meena, A.K., Mishra, G.K., Rai, P.K., Rajgopal, C. & Nagar, P.N. (2005). Removal of heavy metal ions from aqueous solution using carbon aerogel as an adsorbent. J. Hazard. Mater. 122, 161–170. DOI: 10.1016/j.jhazmat.2005.03.024.[Crossref]
  • 36. Karagoz, S., Tay, T., Ucar, S. & Erdem, M. (2008). Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour. Technol. 99, 6214–6222. DOI: 10.1016/j.biortech.2007.12.019.[Crossref]
  • 37. Kara, M., Yuzer, H., Sabah, E. & Celik, M.S. (2003). Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res. 37, 224–232.[PubMed][Crossref]
  • 38. Prabakaran, R. & Arivoli, S. (2012). Adsorption kinetics, equilibrium and thermodynamic studies of Nickel adsorption onto Thespesia Populnea bark as biosorbent from aqueous solutions. Euro. J. Appl. Eng. Sci. Res. 1(4), 134–142.
  • 39. Jaycock, M.J. & Parfitt, G.D. (1981). Chem. .Interf. Ellis Horwood Ltd., Onichester.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.