PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 1 | 86-91
Tytuł artykułu

The influence of the chain length and the functional group steric accessibility of thiols on the phase transfer efficiency of gold nanoparticles from water to toluene

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the influence of the chain length and the functional group steric accessibility of thiols modifiers on the phase transfer process efficiency of water synthesized gold nanoparticles (AuNPs) to toluene. The following thiols were tested: 1-decanethiol, 1,1-dimethyldecanethiol, 1-dodecanethiol, 1-tetradecanethiol and 1-oktadecanethiol. Nanoparticles (NPs) synthesized in water were precisely characterized before the phase transfer process using Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). The optical properties of AuNPs before and after the phase transfer were studied by the UV-Vis spectroscopy. Additionally, the particle size and size distribution before and after the phase transfer of nanoparticles were investigated using Dynamic Light Scattering (DLS). It turned out that the modification of NPs surface was not effective in the case of 1,1-dimethyldecanethiol, probably because of the difficult steric accessibility of the thiol functional group to NPs surface. Consequently, the effective phase transfer of AuNPs from water to toluene did not occur. In toluene the most stable were nanoparticles modified with 1-decanethiol, 1-dodecanethiol and 1-tetradecanethiol.
Wydawca
Rocznik
Tom
16
Numer
1
Strony
86-91
Opis fizyczny
Daty
wydano
2014-03-01
online
2014-03-25
Twórcy
  • University of Lodz, Faculty of Chemistry, Department of Materials Technology and Chemistry, Pomorska 163, 90-236 Lodz, Poland
  • University of Lodz, Faculty of Chemistry, Department of Materials Technology and Chemistry, Pomorska 163, 90-236 Lodz, Poland
  • University of Lodz, Faculty of Chemistry, Department of Materials Technology and Chemistry, Pomorska 163, 90-236 Lodz, Poland
  • University of Lodz, Faculty of Chemistry, Department of Materials Technology and Chemistry, Pomorska 163, 90-236 Lodz, Poland
  • University of Lodz, Faculty of Chemistry, Department of Materials Technology and Chemistry, Pomorska 163, 90-236 Lodz, Poland
  • University of Lodz, Faculty of Chemistry, Department of Materials Technology and Chemistry, Pomorska 163, 90-236 Lodz, Poland , jgrobel@uni.lodz.pl
Bibliografia
  • 1. Murphy, C.J., Sau, T.K., Gole, A.M., Orendorff, C.J., Gao, J., Gou, L., Hunyadi, S.E. & Li, T. (2005). Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B 109(29), 13857-13870. DOI: 10.1021/jp0516846.[Crossref]
  • 2. Ko, S.H., Park, I., Pan, H., Grigoropoulos, C.P., Pisano, A.P., Luscombe, C.K. & Frèchet, J.M.J. (2007). Direct Nanoimprinting of Metal Nanoparticles for Nanoscale Electronics Fabrication, Nano Lett. 7(7), 1869-1877. DOI: 10.1021/nl070333v.[Crossref][WoS]
  • 3. Fendler, J.H. (2001). Chemical Self-assembly for Electronic Applications, Chem. Mater. 13(10), 3196-3210. DOI: 10.1021/cm010165m.[Crossref]
  • 4. Maillard, M., Giorgio, S. & Pileni, M.P. (2002). Silver Nanodisks, Advanced Mat. 14(15), 1084-1086. DOI: 10.1002/1521-4095(20020805)14:15<1084.[Crossref]
  • 5. Yang, Y., Ouyang, J., Ma, L., Tseng, J.H.R. & Chu, C.W. (2006). Electrical Switching and Bistability in Organic/Polymeric Thin Films and Memory Devices, Adv. Funct. Mater. 16(8), 1001-1014. DOI: 10.1002/adfm.200500429.[Crossref]
  • 6. Tsoukalas, D. (2009). From silicon to organic nanoparticles memory devices. Phil. Trans. R. Soc. A 367(1905), 4169-4179. DOI: 10.1098/rsta.2008.0280.[Crossref]
  • 7. Prakash, A., Ouyang, J., Lin, J.L. & Yanga, Y. (2006). Polymer memory device based on conjugated polymer and gold nanoparticles. Appl. Phys. 100(054309). http://dx.doi. org/10.1063/1.2337252[Crossref]
  • 8. Manna, A., Imae, T., Aoi, K., Okada, M. & Yogo, T. (2001). Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles. Chem. Mater. 13(5), 1674-1681. DOI: 10.1021/ cm000416b.[Crossref]
  • 9. Zhang, J.L., Han, B.X., Liu, M.H., Liu D.X., Dong, Z.X., Liu, J., Li, D., Wang, J., Dong, B.Z., Zhang, H. &. Rong, L.X. (2003). Ultrasonication-Induced Formation of Silver Nanofi bers in Reverse Micelles and Small-Angle X-ray Scattering Studies, J. Phys. Chem. B 107(16), 3679-3683. DOI: 10.1021/jp026738f.[Crossref]
  • 10. McLeod, M.C., McHenry, R.S., Beckman, E.J. & Roberts, C.B. (2003). Synthesis and Stabilization of Silver Metallic Nanoparticles and Premetallic Intermediates in Perfl uoropolyether/ CO2 Reverse Micelle Systems. J. Phys. Chem. B 107(12), 2693-2700. DOI: 10.1021/jp0218645.
  • 11. Brust, M., Walker, M., Bethell, D., Schiffrin, D.J. & Whyman, R. (1994). Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System. J. Chem. Soc. Chem. Commun. 801-802. DOI: 10.1039/C39940000801.[Crossref]
  • 12. Goulet, P.J.G., Bourret, G.R. & Lennox, R.B. (2012). Facile Phase Transfer of Large, Water-Soluble Metal Nanoparticles to Nonpolar Solvents, Langmuir 28(5), 2909−2913. DOI: 10.1021/la2038894.[WoS][Crossref]
  • 13. Chandradass, J. & Kim, K.H. (2010). Synthesis and characterization of CuAl2O4 nanoparticles via a reverse microemulsion method. J. Ceram. Process. Res. 11(2), 150-153.
  • 14. Gao, D., He, R., Carraro, C., Howe, R.T, Yang, P. & Maboudian, R. (2005). Selective Growth of Si Nanowire Arrays via Galvanic Displacement Processes in Water-in-Oil Microemulsions, J. Am. Chem. Soc.127(13), 4574-4575. DOI: 10.1021/ja043645y.[Crossref]
  • 15. Eastoe, J., Hollamby, M.J. & Hudson, L. (2006). Recent advances in nanoparticle synthesis with reversed micelles, Adv. Colloid Interfac. 128-130, 5-15. DOI:10.1016/j.cis.2006.11.009.[Crossref]
  • 16. Shon, Y.S., Chuc, S. & Voundi, P. (2009). Stability of tetraoctylammonium bromide-protected gold nanoparticles: Effects of anion treatments, Colloids and Surfaces A: Physicochem. Eng. Aspects 352(1-3), 12-17. DOI:10.1016/j. colsurfa.2009.09.037.[Crossref][WoS]
  • 17. Frenkel, A.I., Nemzer, S., Pister, I., Soussan, L., Harris, T., Sun, Y. & Rafailovich, M.H. (2005). Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. J. Chem. Phys. 123(18), 184701. DOI: 10.1063/1.2126666[Crossref]
  • 18. Wang, X., Xu, S., Zhou, J. & Xu, W. (2010). A rapid phase transfer method for nanoparticles using alkylamine stabilizers. J. Colloid Interf. Sci. 348(1), 24-28. DOI:10.1016/j. jcis.2010.03.068.[Crossref][WoS]
  • 19. Kumar, A., Mukherjee, P., Guha, A., Adyantaya, S.D., Mandale, A.B., Kumar, R. & Sastry, M. (2000). Amphoterization of colloidal gold particles by capping with valine molecules and their phase transfer from water to toluene by electrostatic coordination with fatty amine molecules. Langmuir 16(25), 9775-9783. DOI: 10.1021/la000886k.[Crossref]
  • 20. Gaponik, N., Talapin, D.V., Rogach, A.L., Eychmuler, A. & Weller, H. (2002). Effi cient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents, Nano Lett. 2(8), 803-806. DOI: 10.1021/nl025662w.[Crossref]
  • 21. Lala, N., Lalbegi, S.P., Adyanthaya, S.D. & Sastry, M. (2001). Phase transfer of aqueous gold colloidal particles capped with inclusion complexes of cyclodextrin and alkanethiol molecules into chloroform. Langmuir 17(12), 3766-3768. DOI: 10.1021/la0015765.[Crossref]
  • 22. Machunsky, S. & Peuker, U.A. (2007). Liquid-Liquid Interfacial Transport of Nanoparticles. Hindawi Publishing Corporation, Physical Separation in Science and Engineering. Article ID 34832, 7 pages. DOI:10.1155/2007/34832.
  • 23. Qian, H., Zhu, M., Andersen, U.N. & Jin, R. (2009). Facile, Large-Scale Synthesis of Dodecanethiol-Stabilized Au38. Clusters J. Phys. Chem. A 113(16), 4281-4284. DOI: 10.1021/jp810893w.[Crossref]
  • 24. Grobelny, J., Delrio, F.W., Pradeep, N., Kim D.I., Hackley, V.A. & Cook, R.F. (2011). Methods in Molecular Biology. In S.E. McNeil (Ed.), Size measurement of nanoparticles using atomic force microscopy in Characterization of Nanoparticles Intended for Drug Delivery (pp. 71-82). vol. 697, Springer.
  • 25. Barrena, E., Ocal, C. & Salmeron, M. (2001). Structure and stability of tilted-chain phases of alkanethiols on Au (111). J. Chem. Phys. 114(9), 4210-4015. DOI: 10.1063/1.1346676[Crossref]
  • 26. Schreiber, F. (2000). Structure and growth of self-assembling monolayers, Progress in Surface Science 65(5-8), 151-256. DOI:10.1016/S0079-6816(00)00024-1.[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.