Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 1 | 28-35
Tytuł artykułu

Thermodynamic and mechanical characterisation of kaolin clay

Treść / Zawartość
Warianty tytułu
Języki publikacji
This study deals with experimental thermodynamic and rheological characterization of kaolin. Water sorption isotherms of kaolin were determined for three temperatures (30, 50 and 70°C). Desorption isotherms were fitted by using five models (GAB, BET, Henderson modified, Adam and Shove, Peleg) among the most used ones in literature. The GAB model was found to be the most suitable for describing the relationship between equilibrium moisture content and water activity for the whole range of temperature (30-70°C) and relative humidity(0-100%). Desorption enthalpy and entropy were determined. The desorption enthalpy decreases with increasing moisture content. The density and the shrinkage of the material and the Young’s modulus variations as a function of moisture content were determined experimentally. The Young modulus varies between 0.1 MPa and 14 MPa. The viscoelastic parameters of kaolin were also determined by using a series of Prony.
Opis fizyczny
  • Research and Technology Center of Energy, Thermal Processing Laboratory, B.P. 95, 2050, Hammam-Lif, Tunisia
  • 1. Bilali, L., Kouhila, M., Benchanaa, M., Mokhlisse, A. & Belghith, A. (2001). Experimental study and modelling of isotherms of sorption of humid natural phosphate. Energy Convers. Manage. 42(4), 467-481. DOI: 10.1016/s0196-8904(00)00071-6.[Crossref]
  • 2. Jomaa, W. & Puiggali, J.R. (1991). Drying of shrinkage materials: modelling with shrinkage velocity. Drying Technol. 9(5), 1271-1293. DOI: 10.1080/07373939108916750.[Crossref]
  • 3. Mihoubi, D. & Bellagi, A. (2009). Stress Generated During Drying of Saturated Porous Media. Transp. Por. Med. 80(3), 519-536. DOI: 10.1007/s11242-009-9378-1.[Crossref]
  • 4. Kowalski, S.J. & Rybicki, A. (1996). Drying Stress Formation Induced by Inhomogeneous Moisture and Temperature Distribution. Transp. Por. Med. 24(2), 139-156. DOI: 10.1007/ bf00139842.[Crossref]
  • 5. Ketelaars, A.A. J. (1993). Drying deformable media, kinetics, shrinkage and stress. University of Endhoven.
  • 6. Zhang, Wshan & Mujumdar, A.S. (1992). Deformation and stress analysis of porous capillary bodies during intermittent volumetric thermal drying. Drying Technol. 10(2), 421-443. DOI: 10.1080/07373939208916444.[Crossref]
  • 7. Akiyama, T., Liu, H. & Hayakawa, K.I. (1997). Hygrostress multi-crack formation and propagation in cylindrical viscoelastic food undergoing heat and moisture transfer processes. Int J. Heat Mass Transfer. 40(7), 1601-1609. DOI: 10.1016/s0017-9310(96)00206-2.[Crossref]
  • 8. Jia, C.C., Yang, W., Siebenmorgen, T.J. &Cnossen, A.G. (2002). Development of computer simulation software for single grain kernel drying, tempering, and stress analysis. Transactions of the Asae 45(5), 1485-1492.
  • 9. Mihoubi, D., Zagrouba, F., Vaxelaire, J., Bellagi, A. & Roques, M. (2004). Transfer phenomena during the drying of a shrinkable product: modelling and simulations. Drying Technol. 22(1-2), 91-109. DOI: 10.1081/drt-120028216.[Crossref]
  • 10. Hammouda, I. & Mihoubi, D (2013). Modelling of drying induced stress of clay: elastic and viscoelastic behaviours. Mechanics of Time-Dependent Materials. 1-15. DOI: 10.1007/ s11043-013-9216-2.[Crossref]
  • 11. Mihoubi, D. & Bellagi, A. (2012). Modeling of heat and moisture transfers with stress-strain formation during convective air drying of deformable media. Heat and Mass Transfer. 48(10), 1697-1705. DOI: 10.1007/s00231-012-1014-x.[WoS][Crossref]
  • 12. Kowalski, S.J., Musielak, G., Rybicki, A. & Sliwa, T. (2012). Stresses and Strains in Elastic, Viscoelastic, and Plastic Materials during Drying. Drying Technol. 30(11-12), 1176-1189. 10.1080/07373937.2012.692745[WoS]
  • 13. Brasiello, A., Adiletta, G., Russo, P., Crescitelli, S., Albanese, D. & Di Matteo, M. (2013). Mathematical modeling of eggplant drying: Shrinkage effect. J. Food Eng. 114 (1), 99-105. DOI: 10.1016/j.jfoodeng.2012.07.031.[WoS][Crossref]
  • 14. Dhall, Ashish & Datta, Ashim, K. (2011). Transport in deformable food materials: A poromechanics approach. Chem. Eng. Sci. 66(24), 6482-6497. DOI: 10.1016/j.ces.2011.09.001.[Crossref][WoS]
  • 15. Wolf, W., Spiess, W.E.L. & Jung, G. (1985). Standardization of isotherm measurements (COST-Project 90 and 90 bis). In D. Simatos and J.L. Multon (Eds.), Properties of Water in Foods, vol. 90, 661-679, Springer Netherlands.
  • 16. Ruegg, M. (1980). Calculation of the activity of water in sulphuric acid solutions at various temperatures. Lebensmittel- -Wissenschaft und Technologie. 13(22-24).
  • 17. Kechaou, N. (1989). Séchage des gels fortement déformables: études de la diffusion interne de l’eau et modélisation. Institut National Polytechnique de Loraine, Loraine.
  • 18. Miho ubi, D., Zagrouba, F., Ben Amor, M. & Bellagi, A. (2002). Drying of clay: I. Material Characteristics. Drying Technol. 20(2), 465-487. DOI: 10.1081/drt-120002552.[Crossref]
  • 19. Timo umi, S., Mihoubi, D. & Zagrouba, F. (2007). Shrinkage, vitamin C degradation and aroma losses during infra-red drying of apple slices. Lwt-Food Science and Technology. 40(9), 1648-1654. DOI: 10.1016/j.lwt.2006.11.008.[Crossref][WoS]
  • 20. Miho ubi, D. & Bellagi, A. (2006). Thermodynamic analysis of sorption isotherms of bentonite. J Chem Thermodyn. 38(9), 1105-1110. DOI: 10.1016/j.jct.2005.11.010.[Crossref]
  • 21. Chem khi, S., Zagrouba, F. & Bellagi, A. (2004). Thermodynamics of water sorption in clay. Desalination. 166(1-3), 393-399. DOI: 10.1016/j.desal.2004.06.094.22. Coll ard, J.M. (1989). Etude des transferts d’humidité et des déformations pendant le séchage d’une plaque d’argile. thèse de doctorat, Thèse de l’université de Poitiers, 23. Langmuir, Ir ving (1918). The adsorption of gases on plane surfaces of glasses, mica et platinum. J. Am. Chem. Soc. 40(9), 1361-1403. DOI: 10.1021/ja02242a004.[Crossref]
  • 24. Brunauer, S. , Deming, L.S., Deming, W.E. & Troller, E. (1940). On the theory of Van der Waals adsorption of gases. J. of Amer. Chem. Soc. 62, 1723-1732.
  • 25. Bradley, R. S. (1936). Polymer adsorbed fi lms. Part I. The adsorption of argon on salt crystals at low temperatures and the determination of surface fi elds. J. of Chem. Soc. 58, 1467-1474.
  • 26. Kühn, I. (1964). A new theoretical analysis of adsorption phenomena. Introductory part: The characteristic expression of the main regular types of adsorption isotherms by a single simple equation. J. of Coll. Sci. 19(8), 685-698.[Crossref]
  • 27. Zsigmondy, R. (1911). Über die struktur des gels der kieselsaure, Theorie der entwasserung. Zeitschrift für anorganische Chemie. 71(1), 356-377. DOI: 10.1002/zaac.19110710133.[Crossref]
  • 28. Henderson, S.M. (1952). A basic concept of equilibrium moisture. Agriculture Engineering. 33(1), 23-32.
  • 29. Iglesias, H.A. & Chirife, J. (1976). Prediction of the effect of temperature on water sorption isotherms of food material. Int. J. Food Sci. Technol. 11(2), 109-116. DOI: 10.1111/j.1365-2621.1976.tb00707.x.[Crossref]
  • 30. Lykov, A.V. (19 55). Experimentelle und theoretische grundlagen der trocknung V. E. B. Verlag.
  • 31. Iglesias, H. A. & Chirife, J. (1978). An empirical equation for fi tting water sorption isotherms of fruits and related products. Canadian Institute of Food Science and Technology Journal. 11(1), 12-15.[Crossref]
  • 32. Roques, M. (1988 ). Equilibre entre un solvant et un solide, stage de perfectionnement de séchage. Centre de Perfectionnement des Industries Chimiques de Nancy.
  • 33. Anderson, Robert B. (1946). Modifi cations of the Brunauer, Emmett and Teller Equation1. J. Am. Chem. Soc. 68(4), 686-691. DOI: 10.1021/ja01208a049.[Crossref]
  • 34. Brunauer, S., Emmett, P.H. & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 60(2), 309-319. DOI: 10.1021/ja01269a023.[Crossref]
  • 35. Thompson, T.L., P eart, R.M. & Foster, G.H. (1986). Mathematical simulation of corn drying: a new model. Transactions of the American Society of Agricultural Engineers 11(4), 0582-0586. DOI: 10.13031/2013.39473.
  • 36. Chirife, J. & I glesias, H.A. (1978). Equations for fi tting water sorption isotherms of foods: Part 1 - a review. Int. J. Food Sci. Technol. 13(3), 159-174. DOI: 10.1111/j.1365-2621.1978.tb00792.x[Crossref]
  • 37. Peleg, M. (199 3). Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. Journal of Food Process Engineering. 16(1), 21-37. DOI: 10.1111/j.1745-4530.1993.tb00160.x.[Crossref]
  • 38. Rizvi, S.S.H. ( 2005). Thermodynamics of food and dehydration. In Engineering Properties of Foods, Third Edition: CRC Press.
  • 39. Arslan, N. & T oğrul, H. (2005). Moisture Sorption Isotherms for Crushed Chillies. Biosyst. Eng. 90(1), 47-61.[Crossref]
  • 40. McMinn, W.A.M., Al -Muhtaseb, A.H. & Magee, T.R.A. (2005). Enthalpy-entropy compensation in sorption phenomena of starch materials. Food Res. Int. 38(5), 505-510.[Crossref]
  • 41. Pourcel, F., Jomaa , W., Puiggali, J.R. &Rouleau, L. (2007). Crack Appearance during Drying of an Alumina Gel: Thermo-Hydro-Mechanical Properties. Drying Technol. 25(4-6), 759-766. DOI: 10.1080/07373930701370134.[Crossref]
  • 42. Takhar, Pawan, S. ( 2011). Hybrid Mixture Theory Based Moisture Transport and Stress Development in Corn Kernels During Drying: Coupled Fluid Transport and Stress Equations. J. Food Eng. 105(4), 663-670. [WoS][Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.