Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 1 | 21-27
Tytuł artykułu

Use of fly ash and fly ash agglomerates for As(III) adsorption from aqueous solution

Treść / Zawartość
Warianty tytułu
Języki publikacji
The objective of the present study is to assess the efficiency of fly ash and fly ash agglomerates to remove arsenic(III) from aqueous solution. The maximum static uptakes were achieved to be 13.5 and 5.7 mgAs(III)/adsorbent for nonagglomerated material and agglomerated one, respectively. Isotherm studies showed good fit with the Langmuir (fly ash) and the Freundlich (fly ash agglomerates) isotherm models. Kinetic studies indicated that the sorption of arsenic on fly ash and its agglomerates follows the pseudo-second-order (PSO) chemisorption model (R2 = 0.999). Thermodynamic parameters revealed an endothermic nature of As(III) adsorption on such adsorbents. The adsorption results confirmed that fly ash and its agglomerates can be used for As(III) removal from aqueous solutions. Fly ash can adsorb more arsenic(III) than agglomerates, which are easier to use, because this material is less dusty and easier to separate from solution.
Słowa kluczowe

Opis fizyczny
  • Wrocław University of Technology, Faculty of Chemistry, Division of Chemical Engineering, Norwida 4/6, 50-373 Wrocław, Poland
  • Wrocław University of Technology, Faculty of Chemistry, Division of Chemical Engineering, Norwida 4/6, 50-373 Wrocław, Poland,
  • Wrocław University of Technology, Faculty of Chemistry, Division of Chemical Engineering, Norwida 4/6, 50-373 Wrocław, Poland
  • Wrocław University of Technology, Faculty of Chemistry, Division of Chemical Engineering, Norwida 4/6, 50-373 Wrocław, Poland
  • Wrocław University of Technology, Faculty of Chemistry, Division of Chemical Engineering, Norwida 4/6, 50-373 Wrocław, Poland
  • Wrocław University of Technology, Faculty of Chemistry, Division of Chemical Engineering, Norwida 4/6, 50-373 Wrocław, Poland
  • 1. Sari, A. & Tuzen, M. (2009). Biosorption of As(III) and As(V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: Equilibrium and kinetic studies. J. Hazard. Mater. 164, 1372-1378. DOI:10.1016/j.jhazmat.2008.09.047.[Crossref]
  • 2. Mohan, D. & Pittman, C.U. (2007). Arsenic removal from water/wastewater using adsorbents - A critical review. J. Hazard. Mater. 142, 1-53. DOI: 10.1016/j.jhazmat.2007.01.006.[Crossref][WoS]
  • 3. Choong, T.S.Y., Chuah, T.G., Robiah, Y., Gregory Koay, F.L. & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217, 139-166. DOI: 10.1016/j.desal.2007.01.015.[WoS][Crossref]
  • 4. Kundu, S. & Gupta, A.K. (2007). Adsorption characteristics of As(III) from aqueous solution on iron oxide-coated cement (IOCC). J. Hazard Mater. 142, 97-104. DOI: 10.1016/j. jhazmat.2006.07.059.[Crossref]
  • 5. Pirilä, M., Martikainen, M., Ainassaari, K., Kuokkanen, T. & Keiski, R.L. (2011). Removal of aqueous As(III) and As(V) by hydrous titanium dioxide. J. Colloid Interface Sci. 353, 257-262. DOI: 10.1016/j.jcis.2010.09.020.[Crossref]
  • 6. Mittal, A., Gupta, V.K., Malviya, A. & Mittal, J. (2008). Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo day (Metanil Yellow) by adsorption over waste materials (Bottom Ash and De- Oiled Soya). J. Hazard. Mater. 151, 821-832. DOI: 10.1016/j. jhazmat.2007.06.059.[WoS][Crossref]
  • 7. Mittal, A., Mittal, J., Malviya, A. & Gupta, V.K. (2010). Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J. Colloid Interface Sci. 344, 497-507. DOI: 10.1016/j.jcis.2010.01.007.[WoS][Crossref]
  • 8. Gupta, V.K., Agarwal, S. & Saleh, T.A. (2011). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater. 185, 17-23. DOI: 10.1016/j.jhazmat.2010.08.053.[Crossref]
  • 9. Mittal, A., Mittal, J., Malviya, A. & Gupta, V.K. (2009). Adsorptive removal of hazardous anionic day “Congo red” from wastewater using waste materials and recovery by desorption. J. Colloid Interface Sci. 340, 16-26. DOI: 10.1016/j.jcis.2009.08.019.[Crossref][WoS]
  • 10. Mittal, A., Mittal, J., Malviya, A., Kaur, D. & Gupta, V.K. (2010). Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interface Sci. 343, 463-473. DOI: 10.1016/j.jcis.2009.11.060.[Crossref][WoS]
  • 11. Gupta, V.K., Gupta, B., Rastogi, A., Agarwal, S. & Nayak, A. (2011). A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye - Acid Blue 113. J. Hazard. Mater. 186, 891-901. DOI: 10.1016/j. jhazmat.2010.11.091.[WoS][Crossref]
  • 12. Gupta, V.K., Mittal, A., Malviya, A. & Mittal, J. (2009). Adsorption of carmoisine A from wastewater using waste materials - Bottom ash and deoiled soya. J. Colloid Interface Sci. 335, 24-33. DOI: 10.1016/j.jcis.2009.03.056.[WoS][Crossref]
  • 13. Liao, Y., Liang, J. & Zhou, L. (2011). Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater. Chemosphere 83, 295-301. DOI :10.1016/j.chemosphere.2010.12.060.[Crossref][WoS]
  • 14. Guo, H., Li, Y., Zhao, K., Ren, Y. & Wei, Ch. (2011). Removal of arsenite from water by synthetic siderite: Behaviors and mechanisms. J. Hazard. Mater. 186, 1847-1854. DOI: 10.1016/j.jhazmat.2010.12.078.[WoS][Crossref]
  • 15. Mostafa, M.G., Chen, Y., Jean, J., Liu, Ch. & Lee, Y. (2011). Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite. J. Hazard. Mater. 187, 89-95. DOI: 10.1016/j.jhazmat.2010.12.117.[Crossref][WoS]
  • 16. Polowczyk, I., Bastrzyk, A., Koźlecki, T., Rudnicki, P., Sawiński, W., Sokołowski, A. & Sadowski, Z. (2007). Application of fl y ash agglomerates in the sorption of arsenic. Pol. J. Chem. Tech. 9, 37-41.
  • 17. Singh, T.S. & Pant, K.K. (2006). Solidifaction/stabilization of arsenic containing solid wastes using Portland cement, fl y ash and polymeric materials. J. Hazard. Mater. B131, 29-36. DOI: 10.1016/j.jhazmat.2005.06.046.[Crossref]
  • 18. Wang, Ch., Li, J., Sun, X., Wang, L. & Sun, X. (2009). Evaluation of zeolites synthesized from fl y ash as potential adsorbents by wastewater containing heavy metals. J. Environ. Sci. 21. 127-136.[WoS]
  • 19. Polowczyk, I., Bastrzyk, A., Sawiński, W., Koźlecki, T., Rudnicki, P., Sadowski, Z. & Sokołowski, A. (2010). Use of fl y ash agglomerates for removal of arsenic. Environ. Geochem. Health 32, 361-366. DOI: 10.1007/S10653-010-9306-x.[Crossref][WoS]
  • 20. Ahmaruzzaman, M. (2010). A review on the utilization of fl y ash. Prog. Energy Combustion Sci. 36, 327-363. DOI: 10.1016/j.pecs.2009.11.003.[Crossref][WoS]
  • 21. Öztürk, N. & Kavak, D. (2005). Adsorption of boron from aqueous solutions using fl y ash: Batch and column studies. J. Hazard. Mater. B127, 81-88. DOI: 10.1016/j.jhazmat.2005.06.026.[Crossref]
  • 22. Cho, H., Dalyoung, O. & Kwanho, K. (2005). A study on removal characteristics of heavy metals from aqueous solution by fl y ash. J. Hazard. Mater. B127, 187-195. DOI: 10.1016/j. jhazmat.2005.07.019.[Crossref]
  • 23. Aguilar-Carrillo, J., Garrido, F., Barrios, L. & Garcia- -Gonzales, M.T. (2006). Sorption of As, Cd and Tl as infl uenced by industrial by-products applied to an acidic soil: Equilibrium and kinetics experiments. Chemosphere 65, 2377-2387. DOI: 10.1016/j.chemosphere.2006.04.092.[Crossref]
  • 24. Papandreou, A., Stournaras, C.J. & Panias, D. (2007). Copper and cadmium adsorption on pellets made from fi red coal fl y ash. J. Hazard. Mater. 148, 538-547. DOI: 10.1016/j. jhazmat.2007.03.020.[WoS][Crossref]
  • 25. Deliyanni, E.A., Nalbandian, L. & Matis, K.A. (2006). Adsorptive removal of arsenates by a nanocrystalline hybrid surfactant-akaganeite sorbent. J. Colloid Interface Sci. 302, 458-466. DOI: 10.1016/j.jcis.2006.07.007.[Crossref]
  • 26. Pattanayak, J., Mondal, K., Mathiew, S. & Lalvani, S.B. (2000). A parametric evolution of the removal of As(V) and As(III) by carbon-based adsorbents. Carbon 38, 589-596.
  • 27. Ho, Y.S., Ng, J.C.Y. & McKay, G. (2000). Kinetics of pollutant sorption by biosorbents: review. Sep. Purif. Meth. 29, 189-232.
  • 28. Gupta, V.K. & Ali, I. (2004). Removal of lead and chromium from wastewater using bagasse fl y ash - a sugar industry waste. J. Colloid Interface Sci. 271, 321-328. DOI: 10.1016/j. jcis.2003.11.007.[Crossref]
  • 29. Gupta, V.K., Jain, C.K., Ali, I., Sharma, M. & Saini, V.K. (2003). Removal of cadmium and nickel from wastewater using bagasse fl y ash - a sugar industry waste. Water Res. 37, 4038-4044. DOI: 10.1016/S0043-1354(03)00292-6.[Crossref]
  • 30. Malana, M.A., Qureshi, R.B. & Ashiq, M.N. (2011). Adsorption studies of arsenic on nano aluminium doped manganese copper ferrite polymer (MA, VA, AA) composite: Kinetics and mechanism. Chem. Eng. J. 172, 721-727. DOI: 10.1016/j. cej.2011.06.041.[WoS][Crossref]
  • 31. Malash, G.F. & El-Khaiary, M.I. (2010). Piecewise linear regression: A statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models. Chem. Eng. J 163, 256-263. DOI: 10.1016/j.cej.2010.07.059.[Crossref]
  • 32. Urbano, B.F., Rivas, B.L., Martinez, F. & Alexandratos, B.D. (2012). Equilibrium and kinetic study of arsenic sorption by water-insoluble nanocomposite resin of poly[N-(4-vinylbenzyl)- N-methyl-D-glucamine]-montmorillonite. Chem. Engine. J 193-194, 21-30. DOI: 10.1016/j.cej.2012.03.065 [Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.