PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 1 | 15-20
Tytuł artykułu

Selective recovery of cobalt(II) towards lithium(I) from chloride media by transport across polymer inclusion membrane with triisooctylamine

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work the selective transport of cobalt(II) and lithium(I) ions from aqueous chloride solutions through polymer inclusion membranes (PIMs) is presented. Triisooctylamine (TIOA) has been applied as the ion carrier in membrane. The effects of various parameters on the transport of Co(II) and Li(I) were studied. The obtained results show that Co(II) ions were effectively removed from source phase through PIM containing 32 wt.% TIOA, 22 wt.% CTA (cellulose triacetate) and 46 wt.% ONPOE (o-nitrophenyl octyl ether) or ONPPE (o-nitrophenyl pentyl ether) into deionized water as the receiving phase. The results indicate that there is a possibility of polymer inclusion membranes application to recover Co(II) and Li(I) from aqueous chloride solutions
Wydawca

Rocznik
Tom
16
Numer
1
Strony
15-20
Opis fizyczny
Daty
wydano
2014-03-01
online
2014-03-25
Twórcy
  • Czestochowa University of Technology, Department of Chemistry, Armii Krajowej 19, 42-200 Częstochowa, Poland, b.pospiech@wip.pcz.pl
Bibliografia
  • 1. Bielanski, A. (2010). Inorganic Chemistry, PWN, Poland.
  • 2. Chagnes, A. & Pospiech, B. (2013). A brief review on hydrometallurgical technologies for recycling spent lithium- -ion batteries, J. Chem. Technol. Biotechnol. 88 (7) 1191-1199. DOI: 10.1002/jctb.4053. [Crossref][WoS]
  • 3. Pospiech, B. (2012). Selective extraction of cobalt(II) and lithium(I) using phosphorous acids from leach liquor of spent lithium-ion batteries. Rudy i Metale Nieżelazne 6, 368-373.
  • 4. Chen, L., Tang, X., Zhang, Y., Li, L., Zeng, Z. & Zhang, Y. (2011). Process for the recovery of cobalt oxalate from lithium ion batteries. Hydrometallurgy 108, 80-86. DOI: 10.1016/j. hydromet.2011.04.013.[Crossref][WoS]
  • 5. Väyrynen, A. & Salminen, J. (2012). Lithium ion battery production. J. Chem. Thermodynamics 46, 80-85. DOI: 10.1016/j. jct.2011.09.005.[Crossref][WoS]
  • 6. Lee, J.Ch. & Pandey, B.D. (2012). Bio-processing of solid wastes and secondary resources for metal extraction - A review. Waste Management 32, 3018. DOI: 10.1016/j. wasman.2011.08.010.[Crossref]
  • 7. Shin, S.M., Kim, N.H., Sohn, J.S., Yang, D.H. & Kim, Y.H. (2005). Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79, 172-181. DOI: 10.1016/j. hydromet.2005.06.004.[Crossref]
  • 8. Li, L., Ge, J., Wu, F., Chen, R., Chen, S. & Wu, B. (2010). Recovery of cobalt and lithium from spent lithium-ion batteries using organic citric acid as leachant. J. Hazard. Mater. 176, 288-293. DOI: 10.1016/j.hazmat.2009.11.026.[WoS][Crossref]
  • 9. Zhao, J.M., Shen, X.Y., Deng, F.L., Wang, F.C., Wu, Y. & Liu, H.Z. (2011). Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex 272. Sep. Purif. Technol. 78, 345-351. DOI: 10.1016/j.seppur.2010.12.024.[Crossref]
  • 10. Sun, L. & Qiu, K. (2011). Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium ion batteries. J. Hazard. Mater. 194, 378-384. DOI: 10.1016/j.jhazmat.2011.07.114.[Crossref][WoS]
  • 11. Swain, B., Jeong, J., Lee, J., Lee, G.H. & Sohn, J. (2007). Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. J. Power Sources 167, 536-544. DOI: 10.1016/j.powsour.2007.02.046.[WoS][Crossref]
  • 12. Suzuki, T., Nakamura, T., Inoue, Y., Niinae, M. & Shibata, J. (2012). A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Sep. Purif. Technol. 98, 396-401. DOI: org/10.1016/j. seppur.2012.06.034.[Crossref][WoS]
  • 13. Swain, B., Jeong, J., Lee, J. & Lee, G. (2007). Extraction of Co(II) by supported liquid membrane and solvent extraction using Cyanex 272 as an extractant: A comparison study. J. Membr. Sci. 288, 139-148. DOI: 10.1016/j.memsci.2006.11.012.[Crossref]
  • 14. Swain, B., Jeong, J., Yoo, K. & Lee, J. (2010). Synergistic separation of Co(II)/Li(I) for the recycling of LIB industry wastes by supported liquid membrane using Cyanex 272 and DP-8R. Hydrometallurgy 101, 20-27. DOI: 10.1016/j.hydromet. 2009.11.012.[WoS][Crossref]
  • 15. Alguacil, F.J., Alonso, M., Lopez, F.A., Lopez-Delgado, A. (2011). Active transport of cobalt(II) through a supported liquid membrane using the mixture DP8R and Acorga M5640 as extractant. Desalination 281, 221-225. DOI: 10.1016/j.desal. 2011.07.064.[WoS][Crossref]
  • 16. Sürücü, A., Eyüpoglu, V., Tutkun, O. (2010). Selective separation of cobalt and nickel by supported liquid membranes. Desalination 250, 1155-1156. DOI: 10.1016/j.desal.2009.09.131.[Crossref][WoS]
  • 17. Kozłowski, C.A., Kozlowska, J., Pellowski, W. & Walkowiak, W. (2006). Separation of cobalt-60, strontium-90, and cesium-137 radioisotopes by competitive transport across polymer inclusion membranes with organophosphorous acids. Desalination 198, 141-148. DOI: 10.1016/j.desal.2006.02.005.[Crossref]
  • 18. Kagaya, S. Cattrall, R.W. & Kolev, S.D. (2011). Solid- -phase extraction of cobalt(II) from lithium chloride solutions using a poly(vinyl chloride)-based polymer inclusion membrane with Aliquat 336 as the carrier. Anal. Sci. 27, 653-7.[WoS]
  • 19. Blitz-Raith, A.H., Paimin, R., Cattral, R.W. & Kolev, S.D. (2007). Separation of Co(II) from Ni(II) by solid phase extrac- tion into Aliquat 336 chloride immobilized in poly(vinyl chloride), Talanta 71, 419-423. DOI: 10.1016/j.talanta.2006.04.017.[WoS][Crossref]
  • 20. Pospiech, B. (2012). Separation of silver(I) and copper(II) from aqueous solutions by transport through polymer inclusion membranes with Cyanex 471X. Sep. Sci. Technol. 47, 1413-1419. DOI: org/10.1080/01496395.2012.672521.[Crossref][WoS]
  • 21. Pospiech, B. & Walkowiak, W. (2007). Separation of copper(II), cobalt(II) and nickel(II) from chloride solutions by polymer inclusion membranes. Sep. Purif. Technol. 57, 461-465.DOI: 10.1016/j.tseppur.2006.07.005.[Crossref][WoS]
  • 22. Danesi, R. (1984). Separation of metal species by supported liquid membranes. Sep. Sci. Technol. 19, 857-894.
  • 23. Logeat, M., Mankowski, G., Molinier, J. & Lenzi, M. (1982). Complete separation of copper and cobalt by solvent extraction with triisooctylamine, Hydrometallurgy 9, 105-113.
  • 24. Pospiech, B. (2013). Hydrometallurgical recovery of cobalt(II) from acidic chloride solutions by transport through polymer inclusion membranes, Phys. Problems of Miner. Process., 49(2) 641-649.
  • 25. Walkowiak, W., Bartsch, R.A., Kozlowski, C., Gega, J., Charewicz, W.A. & Amiri-Eliasi, B. (2000). Separation and removal of metal ionic species by polymer inclusion membranes. J. Radioanal. Nucl. Chem. 246 (32) 643-650.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.