PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 15 | 3 | 1-6
Tytuł artykułu

Deposition of a polymeric porous superhydrophobic thin layer on the surface of poly(vinylidenefluoride) hollow fiber membrane

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Porous superhydrophobic layer of low-density polyethylene (LDPE) was created by a simple approach on the Poly(vinylidenefluoride) (PVDF) hollow fiber membranes. Acetone and ethanol mixtures with different volume ratios were used as the non-solvent on the coating surface. A 5:1 (v/v) acetone/ethanol ratio provided a porous surface with a 152° ± 3.2 water contact angle. The high contact angle could reduce membrane wettability for better carbon dioxide capture when the membrane was used as gas-liquid contactor in absorption processes. To assess the effect of the created superhydrophobic layer, the pristine and modified membranes were tested in a CO2 absorption system for ten days. The results revealed that the absorption flux in the modified membrane was higher than that of pristine membrane.
Słowa kluczowe
Wydawca

Rocznik
Tom
15
Numer
3
Strony
1-6
Opis fizyczny
Daty
wydano
2013-09-01
online
2013-09-20
Twórcy
autor
  • University Sains Malaysia, School of Chemical Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia, chlatif@eng.usm.my
  • University Sains Malaysia, School of Chemical Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  • Tikrit University, Chemical Engineering Department, Saladdin, Iraq
autor
  • University Sains Malaysia, School of Chemical Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
autor
  • University Sains Malaysia, School of Chemical Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Bibliografia
  • 1. Desideri, U. & Paolucci, A. (1999). Performance modeling of a carbon dioxide removal system for power plants. EnergyConvers. Manage. 40 (18), 1899-1915. DOI: 10.1016/S0196-8904(99)00074-6.[Crossref]
  • 2. Qi, Z. & Cussler, E.L. (1985). Microporous hollow fibers for gas absorption. Part 1: mass transfer in the liquid. J. Membr. Sci. 23 (3), 321-332. DOI: 10.1016/S0376-7388(00)83149-X.[Crossref]
  • 3. Qi, Z. & Cussler, E.L. (1985). Microporous hollow fibers for gas absorption. II. Mass transfer across the membrane J. Membr. Sci. 23 (3), 333-345. DOI: 10.1016/S0376-7388(00)83150-6.[Crossref]
  • 4. Wang, R., Zhang, H.Y., Feron, P.H.M. & Liang, D.T. (2005). Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Sep. Purif. Technol. 46 (1-2), 33-40. DOI: 10.1016/j.seppur.2005.04.007.[Crossref]
  • 5. Ahmad, A.L., Sunarti, A.R., Teongl, L.K. & Fernando, W.J.N. (2009). Development of thin film composite for CO2 separation in membrane gas absorption application. Asia-Pac. J. Chem. Eng. 4 (5), 787-792. DIO: DOI: 10.1002/apj.339.[Crossref]
  • 6. Rajabzadeh, S., Yoshimoto, S., Teramoto, M., Al-Marzouqi M. & Matsuyama, H. (2009). CO2 absorption by using PVDF hollow fiber membrane contactors with various membrane structures. Sep. Purif. Technol. 69 (2), 210-220. DOI: 10.1016/j. seppur.2009.07.021.[WoS][Crossref]
  • 7. Mansourizadeh, A., Ismail, A.F. & Matsuura T. (2010). Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor. J. Membr. Sci. 353 (1-2), 192-200. DOI: 10.1016/j. memsci.2010.02.054.[Crossref][WoS]
  • 8. Ahmad, A.L., Sunarti, A.R., Lee, K.T. & Fernando, W.J.N. (2010). CO2 removal using membrane gas absorption. Int. J. Greenh. Gas Control. 4 (3), 495-498. DOI: 10.1016/j. ijggc.2009.12.003.[WoS][Crossref]
  • 9. Mansourizadeh, A. & Ismail, A.F. (2011). Preparation and characterization of porous PVDF hollow fiber membranes for CO2 absorption: Effect of different non-solvent additives in the polymer dope. Int. J. Greenh. Gas Control. 5 (4), 640-648. DOI: 10.1016/j.ijggc.2011.03.009.[WoS][Crossref]
  • 10. Atchariyawut, S., Jiraratananon, R. & Wang, R. (2007). Separation of CO2 from CH4 by using gas-liquid membrane contacting process. J. Membr. Sci. 304 (1-2), 163-172. DOI: 10.1016/j.memsci.2007.07.030.
  • 11. Nishikawa, N., Ishibashi, M., Ohta, H., Akutsu, N. & Matsumoto, H. (1995). CO2 removal by hollow fiber gas-liquid contactors. Energy Convers Manage. 36 (6-9), 415-418. DOI: 10.1016/0196-8904(95)00033-A.[Crossref]
  • 12. Mansourizadeh, A., Ismail, A.F., Abdullah, M.S. & Ng, B.C. (2010). Preparation of polyvinylidene fluoride hollow fiber membranes for CO2 absorption using phase-inversion promoter additives. J. Membr. Sci. 355 (1-2), 200-207. DOI: 10.1016/j.memsci.2010.03.031.[Crossref]
  • 13. Mansourizadeh, A. & Ismail, A.F. (2010). Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO2 absorption. Che. Eng. J. 165 (3), 980-988. DOI: 10.1016/j. cej.2010.10.034.[Crossref]
  • 14. Su-Hsia, L., Kuo-Lun, T., Wei-Jie, C. & Hao-Wei, C. (2009). Absorption of carbon dioxide by mixed piperazine- alkanolamine absorbent in a plasma-modified polypropylene hollow fiber contactor. J. Membr. Sci. 333(1-2), 30-37. DOI: 10.1016/j.memsci.2009.01.039.[Crossref][WoS]
  • 15. Su-Hsia, L., Kuo-Lun, T., Hao-Wei, C. & Kueir-Rarn, L. (2009). Influence of fluorocarbon flat-membrane hydrophobicity on carbon dioxide recovery. Chemosphere, 75 (10), 1410-1416. DOI: 10.1016/j.chemosphere.2009.02.027.[Crossref][WoS]
  • 16. Julianna, F.A., Sandra, E.K., Jilska, P.M. & Geoff, S.W. (2008). Fabrication of a superhydrophobic polypropylene membrane by deposition of a porous crystalline polypropylene coating, J. Membr. Sci. 318 (1-2), 107-113. DOI: 10.1016/j. memsci.2008.02.032.[Crossref]
  • 17. Lv, Y., Xinhai Y., Jingjing, J., Shan-Tung, T., Jinyue, Y. & Erik, D. (2012). Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption. App. Energy, 90 (1), 167-174. DOI: 10.1016/j.apenergy.2010.12.038.[Crossref][WoS]
  • 18. Dimitris, S.F., Cristina, D.R. & de Pinho, N.M. (1999). Atomic force microscopy of dense and asymmetric cellulosebased membranes. J. Membr. Sci. 160 (2), 235-242. DOI: 10.1016/S0376-7388(99)00089-7.[Crossref]
  • 19. Tai-Shung, C., Jian-Jun, Q., Alfred, H. & Kee-Chua, T. (2002). Visualization of the effect of die shear rate on the outer surface morphology of ultrafiltration membranes by AFM. J. Membr. Sci. 196 (2), 251-266. DOI: 10.1016/S0376-7388(01)00609-3.[Crossref]
  • 20. Supakorn, A., Chunsheng, F., Rong, W., Ratana, J. & Liang, D.T. (2006). Effect of membrane structure on masstransfer in the membrane gas-liquid contacting process using microporous PVDF hollow fibers. J. Membr. Sci. 285 (1-2), 272-281. DOI: 10.1016/j.memsci.2006.08.029.[Crossref]
  • 21. Shui-ping, Y., Meng-Xiang, F., Wei-Feng, Z., Shu-Yuan, W., Zhi-Kang, X., Zhong-Yang, L. & Ke-Fa, C. (2007). Experimental study on the separation of CO2 from fuel gas using hollow fiber membrane contactors without wetting. Fuel Proce. Technol. 88 (5), 501-511. DOI: 10.1016/j.fuproc.2006.12.007.[Crossref]
  • 22. Xinhong, L., Guangming, C., Yongmei, M., Lin, F., Hongzhi, Z., Lei, J. & Fosong, W. (2006). Preparation of a super-hydrophobic poly(vinyl chloride) surface via solvent-non solvent coating. Polymer. 47 (2), 506-509. DOI: 10.1016/j. polymer.2005.08.097. [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.