PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 15 | 2 | 7-9
Tytuł artykułu

Optimal conditions for the biological removal of arsenic by a novel halophilic archaea in different conditions and its process optimization

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, concerns about arsenic have been increased due to its high acute toxicity to human and serious environmental problems. In this study, the ability of Halorcula sp. IRU1, a novel halophilic archaea isolated from Urmia lake, Iran for arsenic bioaccumulation was investigated and optimized by Taguchi experimental design. The optimum conditions for high arsenic bioaccumulation by Haloarcula sp. IRU1 could be achieved in the presence temperature 40oC, pH 8 and NaAsO2 at 90 mg/L. Under optimum conditions, the microorganism was able to perform their desired function with a 60.89 percent removal of arsenic. In conclusion, Haloarcula sp. IRU1 is resistant to arsenic and removes it in different conditions.
Słowa kluczowe
Wydawca

Rocznik
Tom
15
Numer
2
Strony
7-9
Opis fizyczny
Daty
wydano
2013-07-01
online
2013-07-10
Twórcy
  • Razi University, Department of Biology, Faculty of Science, Kermanshah, Iran
  • University of Qom, Department of Civil Engineering, Qom, Iran
autor
  • Razi University, Department of Biology, Faculty of Science, Kermanshah, Iran
  • Shahid Sadoughi University of Medical Sciences-Yazd, Department of Biochemistry, Faculty of Medicine, Iran
  • Ilam University of Medical Sciences, Department of Clinical Biochemistry, School of Paramedicine, Ilam, Iran, bakhtiyari-s@medilam.ac.ir
  • Ilam University of Medical Sciences, Department of Clinical Biochemistry, School of Medicine, Ilam, Iran
Bibliografia
  • 1. Nordstrom, D.K. (2002). Worldwide occurrences of arsenic in ground water. Science 296: 2143-2145. DOI: 10.1126/ science.1072375.[Crossref]
  • 2. Wang, S. & Mulligan, C.N. (2006). Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Science of the Total Environment 366: 701-721. http://dx.doi.org/10.1016/j.scitotenv.2005.09.005.[Crossref]
  • 3. Wang, S. & Zhao, X. (2009). On the potential of biological treatment for arsenic contaminated soils and groundwater. Journal of Environmental Management 90: 2367-2376. http://dx.doi.org/10.1016/j.jenvman.2009.02.001.[WoS][Crossref]
  • 4. Welch, A.H., Oremland, R.S., Davis, J.A. & Watkins, S.A. (2006). Arsenic in ground water: a review of current knowledge and relation to the CALFED solution area with recommendations for needed research. San Francisco Estuary and Watershed Science 4: 1-32. http://escholarship.org/uc/item/8342704q.
  • 5. Shakya, S., Pradhan, B., Smith, L., Shrestha, J. & Tuladhar, S. (2011). Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal. Journal of Environmental Management 95: 250-255. http://dx.doi.org/10.1016/j.jenvman.2011.08.001.[Crossref][WoS]
  • 7. Dopp, E., Hartmann, L.M., Florea, A.M., von Recklinghausen, U., Pieper, R., Shokouhi, B., Rettenmeier, A.W., Hirner, A.V. & Obe, G. (2004). Uptake of inorganic and organic derivatives of arsenic associated with induced cytotoxic and genotoxic effects in Chinese hamster ovary (CHO) cells. Toxicology and Applied Pharmacology 201: 156-165. DOI:10.1016/j.taap.2004.05.017.[Crossref]
  • 8. Schroeder, H.A. & Balassa, J.J. (1966). Abnormal Trace Elements in Man: Arsenic. Journal of Chronic Diseases 19: 85-106.
  • 9. Smith, A.H., Lingas, E.O. & Rahman, M. (2000). Contamination of Drinking Water by Arsenic in Bangladesh: A Public Health Emergency. Bulletin of the World Health Organization 78: 1093-1103.
  • 10. Duker, A.A., Carranza, E.J.M. & Hale, M. (2005). Arsenic Geochemistry and Health. Environment International 31: 631-641. http://dx.doi.org/10.1016/j.envint.2004.10.020.[Crossref]
  • 11. Zouboulis, A.I. & Katsoyiannis, I.A. (2005). Recent Advances in the Bioremediation of ArsenicContaminated Groundwaters. Environment International 31: 213-219. http://dx.doi.org/10.1016/j.envint.2004.09.018.[Crossref]
  • 12. Kadirvelu, K., Thamaraiselvi, K. & Namasivayam, C. (2001). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology 24: 477-505. DOI: 10.1016/S1383-5866(01)00149-6.[Crossref]
  • 13. Kadirvelu, K., Senthilkumar, P., Thamaraiselvi, K. & Subburam, V. (2002). Activated carbon prepared from biomass as adsorbent: elimination of Ni(II) from aqueous solution. Bioresource Technology 81: 87-90. http://dx.doi.org/10.1016/S0960-8524(01)00093-1.[Crossref]
  • 14. Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M. & Thamaraiselvi, K. (2007). Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials 146: 270-277. http://dx.doi.org/10.1016/j.jhazmat.2006.12.017.[WoS][Crossref]
  • 15. Clausen, C.A. (2000). Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Management & Research 18: 264-268.
  • 16. Srinath, T., Verma, T., Ramteke, P.W. & Garg, S.K. (2002). Chromium(VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48: 427-435. http://dx.doi.org/10.1016/S0045-6535(02)00089-9.[Crossref]
  • 17. Takeuchi, M., Kawahata, H., Gupta, L.P., Kita, N., Morishita, Y., Ono, Y. & Komai, T. (2007). Arsenic resistance and removal by marine and non-marine bacteria. Journal of Biotechnology 127: 434-442. http://dx.doi.org/10.1016/j.jbiotec.2006.07.018.[WoS][Crossref]
  • 18. Srivastava, P.K., Vaish, A., Dwivedi, S., Chakrabarty, D., Singh, N. & Tripathi, R.D. (2011). Biological removal of arsenic pollution by soil fungi. Science of the Total Environment 409: 2430-2442. http://dx.doi.org/10.1016/j.scitotenv.2011.03.002.[Crossref][WoS]
  • 19. Aleboyeh, A., Daneshvar, N. & Kasiri, M.B. (2008). Optimization of C.I. Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chemical Engineering and Processing 47: 827-832. DOI: 10.1016/j.cep.2007.01.033.[Crossref]
  • 20. Santos, S.C. & Boaventura, R.A. (2008). Adsorption modelling of textile dyes by sepiolite. Applied Clay Science 42: 137-145. http://dx.doi.org/10.1016/j.clay.2008.01.002.[Crossref][WoS]
  • 21. Lizama, K., Fletcher, A.T.D. & Sun, G. (2011). Removal processes for arsenic in constructed wetlands. Chemosphere 84: 1032-1043. doi:10.1016/j.chemosphere.2011.04.022.[WoS][Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.