PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 | 1 |
Tytuł artykułu

Label-Free Photoacoustic Cell-Tracking In Real-Time

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cell-tracking method has an important role in detection of metastatic circulating tumor cells (CTCs) and cell-based therapies. Label-free imaging techniques are desirable for cell-tracking because they enable long time observations without photobleaching in living cells or tissues where labeling is not always possible. Photoacoustic microscopy is a label-free imaging technique that offers rich contrast based on nonfluorescent cellular optical absorption associated with intrinsic chromophores and pigments. We show here that photoacoustic imaging is feasible for detecting very low numbers (x 104) of melanoma cells without labeling because of the strong instinct optical absorption of melanin in near-infrared wavelength. Flowing melanoma cells are imaged with micrometerresolution (40 μm) and penetration depths of centimeters (13 mm) in real-time. Photoacoustic imaging as a new cell-tracking method provides a novel modality for cancer screening and offers insights into the underlying biological process of cancer growth and metastasis and cell therapy.
Słowa kluczowe
Wydawca

Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
otrzymano
2002-03-15
zaakceptowano
2014-04-23
online
2014-09-19
Twórcy
  • Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA USA 94305 USA
autor
  • Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA USA 94305 USA
autor
  • Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, California, 94305-5344 USA
autor
  • Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, California, 94305-5344 USA
autor
  • Department of Radiation Oncology, Stanford University, 875 Blake Wilbur Drive Room G233, Stanford, CA 94305-5847, Ph: (650) 498-7896, Fax: (650) 498-4015, lei@stanford.edu
Bibliografia
  • [1] Kircher, M.F., Gambhir, S.S. & Grimm, J. Noninvasive celltracking methods. Nature reviews. Clinical oncology 8, 677-688 (2011).
  • [2] Galanzha, E.I. & Zharov, V.P. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo. Cancers 5, 1691-1738 (2013).
  • [3] de Vries, I.J. et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nature biotechnology 23, 1407-1413 (2005).
  • [4] Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes & development 17, 545-580 (2003).
  • [5] Freudiger, C.W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857-1861 (2008).[WoS]
  • [6] Lao, Y., Xing, D., Yang, S. & Xiang, L. Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth. Physics in medicine and biology 53, 4203-4212 (2008).
  • [7] Xiang, L., Wang, B., Ji, L. & Jiang, H. 4-D photoacoustic tomography. Scientific reports 3, 1113 (2013).
  • [8] Zhang, H.F., Maslov, K., Stoica, G. & Wang, L.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature biotechnology 24, 848-851 (2006).
  • [9] Xi, L., Duan, C., Xie, H. & Jiang, H. Miniature probe combining optical-resolution photoacoustic microscopy and optical coherence tomography for in vivo microcirculation study. Applied optics 52, 1928-1931 (2013).[Crossref]
  • [10] Zhang, C., Cheng, Y.J., Chen, J., Wickline, S. & Wang, L.V. Label-free photoacoustic microscopy of myocardial sheet architecture. Journal of biomedical optics 17, 060506 (2012).
  • [11] Zhou, Y., Zhang, C., Yao, D.K. & Wang, L.V. Photoacoustic microscopy of bilirubin in tissue phantoms. Journal of biomedical optics 17, 126019 (2012).
  • [12] Yao, D.K., Maslov, K., Shung, K.K., Zhou, Q. & Wang, L.V. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. Optics letters 35, 4139-4141 (2010).[Crossref]
  • [13] Xu, Z., Zhu, Q. & Wang, L.V. In vivo photoacoustic tomography of mouse cerebral edema induced by cold injury. Journal of biomedical optics 16, 066020 (2011).
  • [14] Wang, H.W. et al. Label-free bond-selective imaging by listening to vibrationally excited molecules. Physical review letters 106, 238106 (2011).[Crossref][WoS]
  • [15] Zhang, C., Zhang, Y.S., Yao, D.K., Xia, Y. & Wang, L.V. Labelfree photoacoustic microscopy of cytochromes. Journal of biomedical optics 18, 20504 (2013).[WoS]
  • [16] Zhang, H.F., Maslov, K. & Wang, L.V. In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. Nature protocols 2, 797-804 (2007).[WoS]
  • [17] Talukdar, Y., Avti, P.K., Sun, J. & Sitharaman, B. Multimodal Ultrasound-Photoacoustic Imaging of Tissue Engineering Scaffolds and Blood Oxygen Saturation In and Around the Scaffolds. Tissue engineering. Part C, Methods (2013).
  • [18] Jiang, H. & Xu, Y. Phase-contrast imaging of tissue using nearinfrared diffusing light. Medical physics 30, 1048-1051 (2003).
  • [19] Nedosekin, D.A., Sarimollaoglu, M., Ye, J.H., Galanzha, E.I. & Zharov, V.P. In vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers. Cytometry. Part A : the journal of the International Society for Analytical Cytology 79, 825-833 (2011).[Crossref]
  • [20] Weight, R.M., Viator, J.A., Dale, P.S., Caldwell, C.W. & Lisle, A.E. Photoacoustic detection of metastatic melanoma cells in the human circulatory system. Optics letters 31, 2998-3000 (2006). [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_phto-2014-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.