PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 1 | 1 |
Tytuł artykułu

Milk-derived angiotensin-I-converting enzymeinhibitory peptides generated by Lactobacillus delbrueckii subsp. lactis CRL 581

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several strains of Lactobacillus helveticus and Lactobacillus delbrueckii subsp. lactis were evaluated for their ability to release angiotensin-I-converting enzyme (ACE) inhibitory peptides from α-casein (α-CN) and β-casein (β-CN). Casein peptides resulting from L. delbrueckii subsp. lactis CRL 581-mediated hydrolysis exhibited the highest ACE-inhibitory (ACEI) activities, with values of 53 and 40% for α-CN and β-CN, respectively. The casein hydrolysates were fractionated by reversedphase high pressure liquid chromatography and some of the active peptides were identified by mass spectrometry. The fraction with the highest ACEI activity arose from β-CN and contained a mixture of the β-CN f194-206 (QEPVLGPVRGPFP) and f198-206 (LGPVRGPFP) peptides. Furthermore, the ACEI tripeptide IPP was identified in all β-CN hydrolysates; L. delbrueckii subsp. lactis CRL 581 produced the highest amount of this peptide. The bioactive peptides released by CRL 581 strain may be used in the formulation of functional foods and nutraceuticals, representing a healthier and natural alternative for regulating blood pressure.
Wydawca

Czasopismo
Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
wydano
2014-01-01
otrzymano
2013-07-26
zaakceptowano
2013-12-06
online
2014-03-10
Twórcy
  • Centro de Referencia para Lactobacilos (CERELA) CONICETChacabuco 145 – 4000 S. M. de Tucuman –Argentina
  • Istituto di Scienze dell‘Alimentazione CNR, Via Roma 64, I-83100 Avellino, Italy
  • Istituto di Scienze dell‘Alimentazione CNR, Via Roma 64, I-83100 Avellino, Italy
  • Centro de Referencia para Lactobacilos (CERELA) CONICETChacabuco 145 - 4000 S. M. de Tucuman -Argentina
  • Centro de Referencia para Lactobacilos (CERELA) CONICETChacabuco 145 - 4000 S. M. de Tucuman -Argentina
Bibliografia
  • [1] Saavedra L., Hebert E.M., Minahk C., Ferranti P., An overview of “omic” analytical methods applied in bioactive peptide studies, Food Res. Int., 2013, 54, 925-934.[WoS]
  • [2] Hebert E.M., Saavedra L., Ferranti P., Bioactive peptides derived from casein and whey proteins, in: Mozzi F., Raya R., Vignolo G. (Eds.), Biotechnology of Lactic Acid Bacteria: Novel Applications, Wiley-Blackwell, Ames, Iowa, USA, 2010, 233-249.
  • [3] Korhonen H., Pihlanto A., Food-derived bioactive peptidesopportunities for designing future foods, Curr. Pharm. Des., 2003, 9, 1297-1308.[PubMed][Crossref]
  • [4] Hayes M., Ross R.P., Fitzgerald G.F., Stanton C., Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part I: overview, Biotechnol. J., 2007, 2, 426-434.
  • [5] Espeche Turbay M.B., de Moreno de LeBlanc A., Perdigon G., Savoy de Giori G., Hebert E.M., β-Casein hydrolysate generated by the cell envelope-associated proteinase of Lactobacillus delbrueckii ssp. lactis CRL 581 protects against trinitrobenzene sulfonic acid-induced colitis in mice, J. Dairy Sci., 2012, 95, 1108-1118.[WoS]
  • [6] Hebert E.M., Mamone G., Picariello G., Raya R.R., Savoy G., Ferranti P., et al., Characterization of the pattern of αs1- and β-casein breakdown and release of a bioactive peptide by a cell envelope proteinase from Lactobacillus delbrueckii subsp. lactis CRL 581, Appl. Environ. Microbiol., 2008, 74, 3682-3689.
  • [7] Savijoki K., Ingmer H., Varmanen P., Proteolytic systems of lactic acid bacteria, Appl. Microbiol. Biotechnol., 2006, 71, 394-406.
  • [8] Panchaud A., Affolter M., Kussmann M., Mass spectrometry for nutritional peptidomics: How to analyze food bioactives and their health effects, J. Proteomics, 2012, 75, 3546-3559.[WoS]
  • [9] Vermeirssen V., Van Camp J., Verstraete W., Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides, J. Biochem. Biophys. Methods, 2002, 51, 75-87.
  • [10] Harrison-Bernard L.M., The renal renin-angiotensin system, Adv. Physiol. Educ., 2009, 33, 270-274.[WoS]
  • [11] Gobbetti M., Ferranti P., Smacchi E., Goffredi F., Addeo F., Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4, Appl. Environ. Microbiol., 2000, 66, 3898-3904.
  • [12] Aquilanti L., Carbini A., Strappati R., Santarelli S., Silvestri G., Garofalo C., Clementi F., Characterisation of Lactobacillus helveticus strains producing antihypertensive peptides by RAPD and inverse-PCR of IS elements, Benef. microbes, 2010, 1, 229-242.[WoS]
  • [13] Boelsma E., Kloek J., Lactotripeptides and antihypertensive effects: a critical review, Br. J. Nutr., 2009, 101, 776-786.[WoS]
  • [14] Hebert E.M., Raya R.R., de Giori G.S., Modulation of the cell-surface proteinase activity of thermophilic lactobacilli by the peptide supply, Curr. Microbiol., 2002, 45, 385-389.
  • [15] Pescuma M., Espeche Turbay M.B., Mozzi F., Font de Valdez G., Savoy de Giori G., Hebert E.M., Diversity in proteinase specificity of thermophilic lactobacilli as revealed by hydrolysis of dairy and vegetable proteins, Appl. Microbiol. Biotechnol., 2013, 97, 7831-7844[WoS]
  • [16] Hebert E.M., Raya R.R., De Giori G.S., Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062, Appl. Environ. Microbiol., 2000, 66, 5316-5321.
  • [17] Espeche Turbay M.B., Savoy de Giori G., Hebert E.M., Release of the cell-envelope-associated proteinase of Lactobacillus delbrueckii subspecies lactis CRL 581 is dependent upon pH and temperature, J. Agr. Food Chem., 2009, 57, 8607-8611.[WoS]
  • [18] Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72, 248-254.
  • [19] Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, 227, 680-685.
  • [20] Biniossek M.L., Schilling O., Enhanced identification of peptides lacking basic residues by LC-ESI-MS/MS analysis of singly charged peptides, Proteomics, 2012, 12, 1303-1309.[PubMed][Crossref][WoS]
  • [21] Sentandreu M.A., Toldra F., A fluorescence-based protocol for quantifying angiotensin-converting enzyme activity, Nat. Protoc., 2006, 1, 2423-2427.
  • [22] Kunji E.R., Mierau I., Hagting A., Poolman B., Konings W.N., The proteolytic systems of lactic acid bacteria, Antonie Van Leeuwenhoek, 1996, 70, 187-221.
  • [23] Exterkate F.A., Differences in short peptide-substrate cleavage by two cell-envelope-located serine proteinases of Lactococcus lactis subsp. cremoris are related to secondary binding specificity, Appl. Microbiol. Biotechnol., 1990, 33, 401-406.
  • [24] Miclo L., Roux E., Genay M., Brusseaux E., Poirson C., Jameh N., Perrin C., Dary A., Variability of hydrolysis of β-, αs1-, and αs2-caseins by 10 strains of Streptococcus thermophilus and resulting bioactive peptides, J. Agr. Food Chem., 2012, 60, 554-565.[WoS]
  • [25] Exterkate F.A., Alting A.C., Bruinenberg P.G., Diversity of cell envelope proteinase specificity among strains of Lactococcus lactis and its relationship to charge characteristics of the substrate-binding region, Appl. Environ. Microbiol., 1993, 59, 3640-3647.
  • [26] Martin-Hernandez M.C., Alting A.C., Exterkate F.A., Purification and characterization of the mature, membrane-associated cell-envelope proteinase of Lactobacillus helveticus L89, Appl. Microbiol. Biotechnol., 1994, 40, 828-834.
  • [27] Sadat-Mekmene L., Genay M., Atlan D., Lortal S., Gagnaire V., Original features of cell-envelope proteinases of Lactobacillus helveticus. A review, Int. J. Food Microbiol., 2011, 146, 1-13.[WoS]
  • [28] Juillard V., Laan H., Kunji E.R.S., Jeronimus-Stratingh C.M., Bruins A.P., Konings W.N., The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes β-casein into more than one hundred different oligopeptides, J. Bacteriol., 1995, 177, 3472-3478.
  • [29] Butikofer U., Meyer J., Sieber R., Walther B., Wechsler D., Occurrence of the angiotensin-converting enzyme inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in different cheese varieties of Swiss origin, J. Dairy Sci., 2008, 91, 29-38.[WoS]
  • [30] Jauhiainen T., Vapaatalo H., Poussa T., Kyronpalo S., Rasmussen M., Korpela R., Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement, Am. J. Hypertens., 2005, 18, 1600-1605.[Crossref]
  • [31] Hernandez-Ledesma B., Quiros A., Amigo L., I. R., Simulated gastrointestinal digestion of human milk versus infant formula. Identification of bioactive peptides, Int. Dairy J., 2007, 17, 33-41.
  • [32] Maeno M., Yamamoto N., Takano T., Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790, J. Dairy Sci., 1996, 79, 1316-1321.
  • [33] Nakamura Y., Yamamoto N., Sakai K., Takano T., Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme, J. Dairy Sci., 1995, 78, 1253-1257.
  • [34] Yamamoto N., Akino A., Takano T., Antihypertensive effects of different kinds of fermented milk in spontaneously hypertensive rats, Biosci. Biotech. Biochem., 1994, 58, 776-778.[Crossref]
  • [35] Fitzgerald G.F., Murray J.A., Bioactive peptides and lactic fermentations, Int. J. Dairy Technol., 2006, 59, 118-125.[WoS]
  • [36] Bouzerzour K., Morgan F., Cuinet I., Bonhomme C., Jardin J., Le Huerou-Luron I., Dupont D., In vivo digestion of infant formula in piglets: protein digestion kinetics and release of bioactive peptides, Br. J. Nutr., 2012, 1-10.[WoS]
  • [37] Terashima M., Oe M., Ogura K., Matsumura S., Inhibition strength of short peptides derived from an ACE inhibitory peptide, J. Agr. Food Chem., 2011, 59, 11234-11237.[WoS]
  • [38] Cheung H.S., Wang F.L., Ondetti M.A., Sabo E.F., Cushman D.W., Binding of peptide substrates and inhibitors of angiotensinconverting enzyme. Importance of the COOH-terminal dipeptide sequence, J. Biol. Chem., 1980, 255, 401-407.39.
  • [39] Aihara K., Kajimoto O., Hirata H., Takahashi R., Nakamura Y., Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension, J. Am. Coll. Nutr., 2005, 24, 257-265.[Crossref]
  • [40] Jauhiainen T., Ronnback M., Vapaatalo H., Wuolle K., Kautianen H., Korpela R., Lactobacillus helveticus fermented milk reduces arterial stiffness in hypertensive subjects, Int. Dairy J., 2007, 17, 1209-1211.[WoS]
  • [41] Mizuno S., Matsuura K., Gotou T., Nishimura S., Kajimoto O., Yabune M., Kajimoto Y., Yamamoto N., Antihypertensive effect of casein hydrolysate in a placebo-controlled study in subjects with high-normal blood pressure and mild hypertension, Br. J. Nutr., 2005, 94, 84-91.
  • [42] Seppo L., Jauhiainen T., Poussa T., Korpela R., A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects, Am. J. Clin. Nutr., 2003, 77, 326-330.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_ped-2014-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.