PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 | 1 |
Tytuł artykułu

Birefringence improvement in azopolymer doped with MFI zeolite nanoparticles

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hybrid organic/inorganic materials based on combination of polymers and inorganic nanoparticles (NP) attract considerable attention due to their advantageous electrical, optical, or mechanical properties. Recently it was reported that doping photopolymers with nanoparticles allows to achieve near 100% net diffraction efficiency in case of conventional holographic recording. Thus, we have synthesized novel organic/inorganic composite materials by incorporating MFI (Mordenite Framework Inverted) type zeolite nanoparticles in an amorphous side-chain azopolymer. A considerable improvement of the photoresponse in thin films of these composite materials has been observed compared to the non-doped samples - nearly 25% increase of the saturated value of the birefringence.Moreover the photoinduced birefringence is stable in time which allows these materials to be used as media for diffractive optical elements with high efficiency and unique polarization properties.
Wydawca

Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
wydano
2014-01-01
otrzymano
2014-06-30
zaakceptowano
2014-09-17
online
2014-11-19
Twórcy
  • Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl.109, 1113 Sofia, Bulgaria
  • Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl.109, 1113 Sofia, Bulgaria and College of Telecommunications and Post, 1 Acad. St. Mladenov Str., 1700 Sofia, Bulgaria, lian@hctp.acad.bg
  • Laboratoire Catalyse & Spectrochimie, University of Caen, 6, Boulevard du Maréchal Juin, 14050 Caen Cedex, France
Bibliografia
  • [1] T. Todorov, L. Nikolova and N. Tomova, Polarization Holography 1. A new high-eflciency organic material with reversible photoinduced birefringence, Appl. Opt. 23, 1984, 4309.[PubMed][Crossref]
  • [2] Nikolova L., Ramanujam P. S., Polarization Holography, Cambridge University Press, Cambridge, 2009
  • [3] M. Eich and J. H. Wendorff, Erasable holograms in polymeric liquid-crystals, Makromol. Chem. - Rapid Comm. 8, 1987, 467.
  • [4] A. Natansohn, P. Rochon, J.Gosselin and S.Xie, Azo polymers for reversible optical storage. 1. Poly[4’-[[2- (acryloyloxy)ethyl]ethylamino]-4-nitroazobenzene], Macromolecules 25, 1992, 2268.[Crossref]
  • [5] D. Y. Kim, L. Li, X. L. Jiang, V. Shivshankar, J. Kumar and S. K. Tripathy, Polarized laser induced holographic surface relief gratings on polymer films, Macromolecules 28, 1995, 8835.[Crossref]
  • [6] N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson and S. K. Tripathy, Surface relief structures on azo polymer films, J. Mat. Chem. 9, 1999, 1941.[Crossref]
  • [7] T. Fukuda, K. Sumaru, T. Kimura and H. Matsuda, Photofabrication of surface relief structure - mechanism and application, J. Photoch. Photobio. A 145, 2001, 35.
  • [8] J. Zhou, J. Yang, Y. Ke, J. Shen, Q. Zhang and K.Wang, Fabrication of polarization grating and surface relief grating in crosslinked and non-crosslinking azopolymer by polarization holography method, Opt. Mat. 30, 2008, 1787.[Crossref]
  • [9] L. Nikolova, L. Nedelchev, T. Todorov, Tz. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam and S. Hvilsted, Self-induced light polarization rotation in azobenzene-containing polymers, Appl. Phys. Lett. 77, 2000, 657.
  • [10] G. Iftime, F. L. Labarthet, A. Natansohn and P. Rochon, Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light, J. Amer. Chem. Soc. 122, 2000, 12646.
  • [11] K. G. Yager and C. J. Barrett, Novel photo-switching using azobenzene functional materials, J. Photochem. Photobiol. A - Chem. 182, 2006, 250.
  • [12] Z. Zheng, L. Wang, Z. Su, J. Xu, J. Yang and Q. Zhang, Photoinduced chirality in achiral liquid crystalline polymethacrylates containing bisazobenzene and azobenzene chromophores, J. Photoch. Photobio. A 185, 2007, 338.[WoS]
  • [13] J. del Barrio, R. M. Tejedor and L. Oriol, Thermal and light control of the chiral order of azopolymers, Eur. Polym. J. 48, 2012, 384.[WoS]
  • [14] L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted and P. S. Ramanujam, Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy, Appl. Opt. 35, 1996, 3835.[PubMed][Crossref]
  • [15] L. Nedelchev, T. Todorov, L. Nikolova, Tz. Petrova, N. Tomova and V. Dragostinova, Characteristics of high-eflcient polarization holographic gratings, Proc. SPIE 4397, 2001, 338.
  • [16] P. S. Ramanujam, C. Dam-Hansen, R. H. Berg, S. Hvilsted and L. Nikolova, Polarisation-sensitive optical elements in azobenzene polyesters and peptides, Opt. Las. Eng. 44, 2006, 912.[Crossref]
  • [17] S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler and P. S. Ramanujam, Novel side-chain liquid-crystalline polyester architecture for reversible optical storage,Macromolecules 28, 1995, 2172.[Crossref]
  • [18] P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted and R. H. Berg, A remarkably eflcient azobenzene peptide for holographic information storage, J. Amer. Chem. Soc. 121, 1999, 4738.
  • [19] L. Nedelchev, A. S. Matharu, S. Hvilsted and P. S. Ramanujam, Photoinduced anisotropy in a family of amorphous azobenzene polyesters for optical storage, Appl. Opt. 42, 2003, 5918.[Crossref]
  • [20] N. C. R. Holme, S. Hvilsted, E. Lőrincz, A.Matharu, L. Nedelchev, L. Nikolova and P. S. Ramanujam, Azobenzene Polyesters for Polarization Holographic Storage: Part I Materials and Characterization, in: H. Nalwa (Ed.), Handbook of Organic Electronics and Photonics, Amer. Sci. Publ., Valencia CA, 2008, pp. 184-211.
  • [21] H. Audorff, K. Kreger, R. Walker, D. Haarer, L. Kador and H. W. Schmidt, Holographic Gratings and Data Storage in Azobenzene-Containing Block Copolymers and Molecular Glasses, Adv. Polym. Sci. 228, 2010, 59.
  • [22] M. Ivanov, D. Ilieva, G. Minchev, Ts. Petrova, V. Dragostinova, T. Todorov and L. Nikolova, Temperature-dependent light intensity controlled optical switching in azobenzene polymers, Appl. Phys. Lett. 86, 2005, 181902.[Crossref]
  • [23] N. Suzuki and Y. Tomita, Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction eflciency near 100%, Appl. Opt. 43, 2004, 2125.[Crossref][PubMed]
  • [24] Y. Tomita, N. Suzuki and K. Chikama, Holographic manipulation of nanoparticle distribution morphology in nanoparticledispersed photopolymers, Opt. Lett. 30, 2005, 839.[PubMed][Crossref]
  • [25] E. Leite, I. Naydenova, S. Mintova, L. Leclercq and V. Toal, Photopolymerizable nanocomposites for holographic recording and sensor application, Appl. Opt. 49, 2010, 3652.[Crossref][PubMed]
  • [26] S. M. Shah, C. Martini, J. Ackermann and F. Fages, Photoswitching in azobenzene self-assembled monolayers capped on zinc oxide: Nanodots vs nanorods, J. Colloid Interface Sci. 367, 2012, 109.
  • [27] S. Mintova, N. H. Olson, J. Senker and T. Bein, Mechanism of the Transformation of Silica Precursor Solutions into Si-MFI Zeolite, Angew. Chem. 41, 2002, 2558.[Crossref]
  • [28] T. Babeva, R. Todorov, S. Mintova, T. Yovcheva, I. Naydenova and V. Toal, Optical properties of silica MFI doped acrylamidebased photopolymer, J. Opt. A: Pure Appl. Opt. 11, 2009, 024015.[Crossref]
  • [29] T. Babeva, H. Awala, M. Vasileva, J. El Fallah, K. Lazarova and S. Mintova, Pure silica MFI zeolite films as antireflection coatings, Bulg. Chem. Commun. 45B, 2013, 18.
  • [30] G. Martinez-Ponce, Ts. Petrova, N. Tomova, V. Dragostinova, T. Todorov and L. Nikolova, Investigations on photoinduced processes in a series of azobenzene-containing side-chain polymers, J. Opt. A: Pure Appl. Opt. 6, 2004, 324.[Crossref]
  • [31] L. Nedelchev, D. Nazarova, V. Dragostinova and D. Karashanova, Increase of photoinduced birefringence in a new type of anisotropic nanocomposite: azopolymer doped with ZnO nanoparticles, Opt. Lett. 37, 2012, 2676.[Crossref]
  • [32] L. Nedelchev, D. Nazarova and V. Dragostinova, Photosensitive organic/inorganic azopolymer based nanocomposite materials with enhanced photoinduced birefringence, J. Photochem. Photobiol. A: Chem. 261, 2013, 26.[WoS]
  • [33] D. Nazarova, L. Nedelchev, P. Sharlandjiev and V. Dragostinova, Anisotropic hybrid organic/inorganic (azopolymer/SiO2 NPs) materials with enhanced photoinduced birefringence, Appl. Opt. 52, 2013, E28.[Crossref]
  • [34] J. Zhou, J. Yang, Y. Sun, D. Zhang, J. Shen, Q. Zhang, K. Wang, Effect of silver nanoparticles on photo-induced reorientation of azo groups in polymer films, Thin Solid Films 515, 2007, 7242.[WoS]
  • [35] K. Bhattacharya, P. C. Naha, I. Naydenova, S. Mintova and H. J. Byrne, Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to noncytotoxic MFI-type zeolite nanoparticles, Toxicology Letters 215, 2012, 151. [WoS]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_optof-2014-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.