Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 59 | 4 | 169-173
Tytuł artykułu

Silver nanoparticle accumulation by aquatic organisms – neutron activation as a tool for the environmental fate of nanoparticles tracing

Treść / Zawartość
Warianty tytułu
Języki publikacji
Water environments are noted as being some of the most exposed to the influence of toxic nanoparticles (NPs). Therefore, there is a growing need for the investigation of the accumulation and toxicity of NPs to aquatic organisms. In our studies neutron activation followed by gamma spectrometry and liquid scintillation counting were used for studying the accumulation of silver nanoparticles (AgNPs) by freshwater larvae of Chironomus and fish Danio rerio. The influence of exposition time, concentration and the source of nanoparticles on the efficiency of AgNP accumulation were studied. It was found that AgNPs are efficiently accumulated by Chironomid larvae for the first 30 hours of exposition; then, the amount of silver nanoparticles decreases. The silver content in larvae increases together with the NP concentration in water. Larvae which have accumulated AgNPs can be a source of nanoparticles for fish and certainly higher levels of Ag in the trophic chain. In comparison with water contamination, silver nanoparticles are more efficiently accumulated if fish are fed with AgNP-contaminated food. Finally, it was concluded that the applied study strategy, including neutron activation of nanoparticles, is very useful technique for tracing the uptake and accumulation of NPs in organisms

Opis fizyczny
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302,
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302
  • Department of Analytical Chemistry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302
  • 1. Ahamed, M., AlSalhi, M. S., & Siddiqui, M. K. J. (2010). Silver nanoparticle applications and human health. Clin. Chim. Acta, 411, 1841-1848. DOI: 10.1016/j.cca.2010.08.016.[Crossref][WoS]
  • 2. Capek, I. (2004). Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Colloid Interface Sci., 110, 49-74. DOI: 10.1016/j. cis.2004.02.003.[Crossref]
  • 3. Mahendra, R., Alka, Y., & Aniket, G. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27(1), 76-83. DOI: 10.1016/j. biotechadv.2008.09.002.[WoS][Crossref]
  • 4. Frattini, A., Pellegri, N., Nicastro, D., & Sanctis, O. D. (2005). Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater. Chem. Phys., 94, 148-152. DOI:10.1016/j.matchemphys. 2005.04.023[Crossref]
  • 5. Rand, B. P., Peumans, P., & Forrest, S. R. (2004). Long- -range absorption enhancement in organic tandem thin-fi lm solar cells containing silver nanoclusters. J. Appl. Phys., 96, 7519-7526. DOI:10.1063/1.1812589.[Crossref]
  • 6. Zhai, H. J., Sun, D. W., & Wang, H. S. (2006). Catalytic properties of silica/silver nanocomposites. J. Nanosci. Nanotechnol., 6, 1968-1972. DOI:10.1166/ jnn.2006.320.[Crossref]
  • 7. Yamamoto, S., & Watarai, H. (2006). Surface-enhanced Raman spectroscopy of dodecanethiol-bound silver nanoparticles at the liquid/liquid interface. Langmuir, 22, 6562-6569. DOI: 10.1021/la0603119.[PubMed][Crossref]
  • 8. Bystrzejewska-Piotrowska, G., Golimowski, J., & Urban, L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manage., 29(9), 2587-2595. DOI: 10.1016/j. wasman.2009.04.001.[Crossref]
  • 9. Fabrega, J., Luoma, S. N., Tyler, C. R., Galloway, T. S., & Lead, J. R. (2011). Silver nanoparticles: Behaviour and effects in the aquatic environment. Environ. Int., 37, 517-531. DOI: 10.1016/j.envint.2010.10.012.[WoS][Crossref]
  • 10. Blinova, I., Niskanen, J., Kajankari, P., Kanarbik, L., Käkinen, A., Tenhu, H., Penttinen, O. P., & Kahru, A. (2013). Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ. Sci. Pollut. Res., 20, 3456-3463. DOI: 10.1007/s11356-012-1290-5.[WoS][Crossref]
  • 11. Tang, J., Xiong, L., Wang, S., Wang, J., Liu, L., Li, J., Yuan, F., & Xi, T. (2009). Distribution, translocation and accumulation of silver nanoparticles in rats. J. Nanosci. Nanotechnol., 9(8), 4924-4932. DOI:10.1166/ jnn.2009.1269.[Crossref][WoS]
  • 12. Pinder, L. C. V. (1986). Biology of freshwater chironomidae. Annu. Rev. Entomol., 31, 1-23. DOI: 10.1146/annurev.en.31.010186.000245.[Crossref]
  • 13. OECD. (2004). Test guideline 218 sediment-water chironomid toxicity test using spiked sediment.
  • 14. Krantzberg, G. (1989). Metal accumulation by chironomid larvae: the effects of age and body weight on metal body burdens. Hydrobiologia, 188/189, 497-506. DOI: 10.1007/BF00027817.[Crossref]
  • 15. Goodyear, K. L., & McNeill, S. (1999). Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. Sci. Total Environ., 229, 1-19. DOI: 10.1016/S0048-9697(99)00051-0.[Crossref]
  • 16. Azevedo-Pereira, H. M. V. S., Abreu, S. N., Lemos, M. F. L., & Soares, A. M. V. M. (2012). Bioaccumulation and elimination of waterborne mercury in the midge larvae, Chironomus riparius Meigen (Diptera: Chironomidae). Bull. Environ. Contam. Toxicol., 89, 245-250. DOI: 10.1007/s00128-012-0674-z.[Crossref][WoS]
  • 17. Oughton, D. H., Hertel-AAS, T., Pollicer, E., Mendoza, E., & Joner, E. J. (2008). Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms. Environ. Toxicol. Chem., 27(9), 1883-1887. DOI: 10.1897/07-578.1.[Crossref][WoS]
  • 18. Bystrzejewska-Piotrowska, G., Asztemborska, M., Steborowski, R., Ryniewicz, J., Polkowska-Motrenko, H., & Danko, B. (2012). Application of neutron activaton for investigation of Fe3O4 nanoparticles accumulation by plants. Nukleonika, 57(3), 427-430.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.