PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 1 | 1-9
Tytuł artykułu

Sputtered n-type Bi2Te3/ (Bi,Sb)2Te3superlattice systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bi2Te3, (Bi1−xSbx )2Te3 and layered Bi2Te3/(Bi1−xSbx)2Te3 superlattices fabricated by nanoalloying. Our approach is based on the sequential sputtering of nanoscale layers of the elements and subsequent annealing in order to induce a solid state reaction. While conventionally Bi2(SexTe1−x )3 compounds are used as n-type V2VI3 material system, the deposition of Se proves to be problematic especially for sputtering deposition and is therefore replaced by (Bi1−xSbx )2Te3. A superlattice consisting of 25 nm Bi2Te3/25 nm (Bi0:9Sb0:1)2Te3 – ML (periodicity of 50 nm) was synthesized and annealed at temperatures of 150, 200, 225, and 250°C. The layers are slightly rough and polycrystalline, and the grain sizes increase with increasing annealing temperature. The XRD analysis shows a pronounced (00l) texture of the sputtered layers. SIMS depth profiles reveal that the chemical separation into layers is present, yet smeared out to some degree after annealing at 200°C. High Seebeck coefficients of up to ~−190 μV/K were achieved. A high maximum power factor of 22 μW/cmK2 can be attained after annealing at 250 °C for 12 h. The superlattice system Bi2Te3 / (Bi1−xSbx )2Te3 can compete with Bi2Te3 / Bi2(SexTe1−x )3 in terms of electrical properties while representing a good practical alternative for the sputter deposition due to the substitution of problematic Se with Sb. Cross-plane thermal conductivities are in the range of 0.55 to 0.6 W/mK. The thermal conductivity is generally reduced due to the nanocrystallinity of the material, however, there seems to be no measurable reduction of the thermal conductivity by the superlattice-type 2D nanostructuring.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Tom
1
Strony
1-9
Opis fizyczny
Daty
otrzymano
2013-06-20
zaakceptowano
2013-08-17
online
2013-10-02
Twórcy
autor
  • Fraunhofer Institute for Physical Measurement Techniques (IPM),
    Heidenhofstr. 8, D-79110 Freiburg, Germany
autor
  • Institute of Inorganic Chemistry, Christian-Albrechts-University
    Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
autor
  • Institute of Inorganic Chemistry, Christian-Albrechts-University
    Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
autor
  • Fraunhofer Institute for Physical Measurement Techniques (IPM),
    Heidenhofstr. 8, D-79110 Freiburg, Germany
autor
  • Institute of Inorganic Chemistry, Christian-Albrechts-University
    Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
autor
  • Institute for Materials Science, Christian-Albrechts-University Kiel,
    Kaiserstr. 2, D-24143 Kiel, Germany
autor
  • Fraunhofer Institute for Physical Measurement Techniques (IPM),
    Heidenhofstr. 8, D-79110 Freiburg, Germany
  • Fraunhofer Institute for Physical Measurement Techniques (IPM),
    Heidenhofstr. 8, D-79110 Freiburg, Germany
Bibliografia
  • [1] H. Böttner, J. Nurnus, A. Gavrikov, G. Kühner, M. Jägle,C. Künzel, D. Eberhard, G. Plescher, A. Schubert,K.-H. Schlereth, J. Microelectromech. S. 13, 2004,414
  • [2] M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H.Lee, D. Wang, Z. Ren, J.-P. Fleurial, P. Gogna, Adv.Mater. 19, 2007, 1043
  • [3] M. Winkler, X. Liu, U. Schürmann, J.D. König, L.Kienle, W. Bensch, H. Böttner, Z. Anorg. Allg. Chem.638, 2012, 2441
  • [4] R. Venkatasubramanian, E. Siivola, T. Colpitts, B.O’Quinn., Nature 413, 2001, 597
  • [5] H. Böttner, A. Schubert, H. Kölbel, A. Gavrikov, A.Mahlke, J. Nurnus, Proceedings 23rd InternationalConference on Thermoelectrics (2004, Adelaide, Australia),114
  • [6] L. Zhang, R. Hammond, M. Dolev, M. Liu, A. Palevski,A. Kapitulnik, Appl. Phys. Lett. 101, 2012, 153105
  • [7] R. Martin-Lopez, H. Scherrer, Solid State Commun.108, 1998, 285
  • [8] C.H. Champness, P.T. Chiang, P. Parker, Can. J. Phys.43, 1965, 653
  • [9] H. Scherrer, S. Scherrer, Bismuth Telluride, AntimonyTelluride, and Their Solid Solutions, In: CRC Handbookof Thermoelectrics, ed. D.M. Rowe, CRC press,Boca Raton, FL, 1995
  • [10] D.G. Cahill, Rev. Sci. Instr. 75, 5119 (2004)
  • [11] A. Coelho, TOPAS-Academic, version 5 (ComputerSoftware), Coelho Software, Brisbane, 2007
  • [12] N.H. Abrikosov, V.F. Bankina, L.V. Poretskaya, L.E. Shelimova, E.V. Skudnova, Semiconducting II-VI, IVVI,and V-VI Compounds, Plenum Press, New York,1969
  • [13] W.A. Dollase, J. Appl. Cryst. 19, 1986, 267
  • [14] P.J. Suortti, Appl. Cryst. 5, 1972, 325
  • [15] M. Winkler, X. Liu, J. D. König, S. Buller, U. Schürmann,L. Kienle, W. Bensch, H. Böttner, J. Mater.Chem. 22, 2012, 11323
  • [16] A.F. Joffe, L.S. Stil’bans, Rep. Prog. Phys. 22, 1959,167
  • [17] C.N. Liao, S.W. Kuo, J. Vac. Sci. Technol. A 23, 2005,559
  • [18] M. Winkler, X. Liu, J. D. König, L. Kirste, H. Böttner,W. Bensch, and L. Kienle, J. Electron. Mater. 41, 2012,1322
  • [19] H. Böttner, G. Chen, R. Venkatasubramanian, MRSBulletin 31, 211 (2006)
  • [20] H. Böttner, J. Nurnus, A. Gavrikov, G. Kühner, M. Jägle,C. Künzel, D. Eberhard, G. Plescher, A. Schubert,K.-H. Schlereth, J. Microelectromech. S. 13, 2004,414
  • [21] H. J. Goldsmid, Thermoelectric refrigeration, PlenumPress, New York,1964, p.46
  • [22] G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics– Basic Principles and New Materials Developments,Springer-Verlag, Berlin-Heidelberg, 200, p.118
  • [23] M. Takashiri, S. Tanaka, K. Miyazaki, H. Tsukamoto,J. Alloy Compd. 490, 2010, 44
  • [24] C. Chiritescu, C. Mortensen, D. G. Cahill, D. Johnson,and P. Zschack., J. Appl. Phys. 106, 2009, 073503
  • [25] R. Venkatasubramanian, Phys. Rev. B 61, 2000, 3091
  • [26] V. Narayanamurti, H.L. Störmer, M.A. Chin, A.C. Gossard,W. Wiegmann, Phys. Rev. Lett. 43, 1979, 2012
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_nte-2013-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.