Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 | 1 |
Tytuł artykułu

Single-molecule FRET for Ultrasensitive Detection of Biomolecules

Treść / Zawartość
Warianty tytułu
Języki publikacji
Single-molecule Förster resonance energy transfer (sm- FRET) has been widely employed to detect biomarkers and to probe the structure and dynamics of biomolecules. By monitoring the biological reaction in a spatio-temporal manner, smFRET can reveal the transient intermediates of biological processes that cannot be obtained by conventional ensemble measurements. This review provides an overview of singlemolecule FRET and its applications in ultrasensitive detection of biomolecules, including the major techniques and the molecular probes used for smFRET as well as the biomedical applications of smFRET. Especially, the combination of sm- FRET with new technologies might expand its applications in clinical diagnosis and biomedical research

Opis fizyczny
  • Single-molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
  • Single-molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
  • Single-molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China,
  • [1] Ha, T.; Enderle, T.; Ogletree, D. F.; Chemla, D. S.; Selvin, P. R.; Weiss, S., Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor. Proceedings of the National Academy of Sciences of the United States of America 1996, 93, (13), 6264-6268.
  • [2] Zhang, C. Y.; Yeh, H. C.; Kuroki, M. T.; Wang, T. H., Single-quantum-dot-based DNA nanosensor. Nature Materials 2005, 4, (11), 826-831.[Crossref]
  • [3] Joo, C.; Balci, H.; Ishitsuka, Y.; Buranachai, C.; Ha, T., Advances in single-molecule fluorescence methods for molecular biology. Annual Review of Biochemistry 2008, 77, 51-76.[Crossref]
  • [4] Ha, T.; Kozlov, A. G.; Lohman, T. M., Single- Molecule Views of Protein Movement on Single- Stranded DNA. Annual Review of Biophysics, Vol 41 2012, 41, 295-319.
  • [5] Li, Y.; Zhang, C. Y., Analysis of MicroRNAInduced Silencing Complex-Involved MicroRNATarget Recognition by Single-Molecule Fluorescence Resonance Energy Transfer. Analytical Chemistry 2012, 84, (11), 5097-5102.[Crossref]
  • [6] Heid, C. A.; Stevens, J.; Livak, K. J.; Williams, P. M., Real time quantitative PCR. Genome Research 1996, 6, (10), 986-994.[Crossref][PubMed]
  • [7] Sano, T.; Smith, C. L.; Cantor, C. R., Immuno-Pcr - Very Sensitive Antigen-Detection by Means of Specific Antibody-DNA Conjugates. Science 1992, 258, (5079), 120-122.
  • [8] Lee, J. Y.; Okumus, B.; Kim, D. S.; Ha, T. J., Extreme conformational diversity in human telomeric DNA. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, (52), 18938-18943.
  • [9] Zhou, R. B.; Kunzelmann, S.; Webb, M. R.; Ha, T., Detecting Intramolecular Conformational Dynamics of Single Molecules in Short Distance Range with Subnanometer Sensitivity. Nano Letters 2011, 11, (12), 5482-5488.[Crossref]
  • [10] Liu, S. X.; Harada, B. T.; Miller, J. T.; Le Grice, S. F. J.; Zhuang, X. W., Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription. Nature Structural & Molecular Biology 2010, 17, (12), 1453-U83.
  • [11] Roy, R.; Hohng, S.; Ha, T., A practical guide to single-molecule FRET. Nature Methods 2008, 5, (6), 507-516.[Crossref]
  • [12] Helms, V., Principles of Computational Cell Biology. Wiley-VCH: Weinheim, 2008.
  • [13] Yuan, L.; Lin, W. Y.; Zheng, K. B.; Zhu, S. S., FRETBased Small-Molecule Fluorescent Probes: Rational Design and Bioimaging Applications. Accounts of Chemical Research 2013, 46, (7), 1462-1473.[Crossref]
  • [14] Hohng, S.; Ha, T., Single-molecule quantumdot fluorescence resonance energy transfer. Chemphyschem 2005, 6, (5), 956-960.[Crossref]
  • [15] Albers, A. E.; Okreglak, V. S.; Chang, C. J., A FRETBased Approach to Ratiometric Fluorescence Detection of Hydrogen Peroxide. Journal of the American Chemical Society 2006, 128, (30), 9640-9641.[Crossref]
  • [16] Ray, P. C.; Fortner, A.; Darbha, G. K., Gold Nanoparticle Based FRET Asssay for the Detection of DNA Cleavage. The Journal of Physical Chemistry B 2006, 110, (42), 20745-20748.[Crossref]
  • [17] Rueda, D.; Walter, N. G., Single molecule fluorescence control for nanotechnology. Journal of Nanoscience and Nanotechnology 2005, 5, (12), 1990-2000.[Crossref]
  • [18] Zheng, D. S.; Kaldaras, L.; Lu, H. P., Total internal reflection fluorescence microscopy imaging-guided confocal single-molecule fluorescence spectroscopy. Review of Scientific Instruments 2012, 83, (1).[Crossref]
  • [19] Zheng, D. S.; Kaldaras, L.; Lu, H. P., Total Internal Reflection Fluorescence Microscopy Imaging-Guided Confocal Single-Molecule Fluorescence Spectroscopy. Biophysical Journal 2013, 104, (2), 372a-372a.[Crossref]
  • [20] Axelrod, D.; Burghardt, T. P.; Thompson, N. L., Total Internal-Reflection Fluorescence. Annual Review of Biophysics and Bioengineering 1984, 13, 247-268.[Crossref]
  • [21] Axelrod, D., Total internal reflection fluorescence microscopy in cell biology. Traffic 2001, 2, (11), 764-774.[Crossref]
  • [22] Hategan, A.; Gersh, K. C.; Safer, D.; Weisel, J. W., Visualization of the dynamics of fibrin clot growth 1 molecule at a time by total internal reflection fluorescence microscopy. Blood 2013, 121, (8), 1455-1458.
  • [23] Juskowiak, B., Nucleic acid-based fluorescent probes and their analytical potential. Analytical and Bioanalytical Chemistry 2011, 399, (9), 3157-3176.
  • [24] Didenko, V. V., DNA probes using fluorescence resonance energy transfer (FRET): Designs and applications. Biotechniques 2001, 31, (5), 1106-+.
  • [25] Tyagi, S.; Kramer, F. R., Molecular beacons: Probes that fluoresce upon hybridization. Nature Biotechnology 1996, 14, (3), 303-308.[Crossref]
  • [26] Kuo, C. Y.; Tseng, W. L., Adenosine-based molecular beacons as light-up probes for sensing heparin in plasma. Chemical Communications 2013, 49, (41), 4607-4609.[Crossref]
  • [27] Zhang, C. Y.; Hu, J., Single Quantum Dot-Based Nanosensor for Multiple DNA Detection. Analytical Chemistry 2010, 82, (5), 1921-1927.[Crossref]
  • [28] Cardullo, R. A.; Agrawal, S.; Flores, C.; Zamecnik, P. C.; Wolf, D. E., Detection of Nucleic-Acid Hybridization by Nonradiative Fluorescence Resonance Energy-Transfer. Proceedings of the National Academy of Sciences of the United States of America 1988, 85, (23), 8790-8794.
  • [29] Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, (5385), 2013-2016.
  • [30] Chan, W. C. W.; Nie, S. M., Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, (5385), 2016-2018.
  • [31] Taton, T. A.; Mirkin, C. A.; Letsinger, R. L., Scanometric DNA array detection with nanoparticle probes. Science 2000, 289, (5485), 1757-1760.
  • [32] Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T., Quantum dots versus organic dyes as fluorescent labels. Nature Methods 2008, 5, (9), 763-775.[Crossref]
  • [33] Zhang, Y.; Wang, T. H., Quantum Dot Enabled Molecular Sensing and Diagnostics. Theranostics 2012, 2, (7), 631-654.[Crossref]
  • [34] Chen, Q. G.; Zhou, T. Y.; He, C. Y.; Jiang, Y. Q.; Chen, X., An in situ applicable colorimetric Cu2+ sensor using quantum dot quenching. Analytical Methods 2011, 3, (7), 1471-1474.
  • [35] Ellington, A. D.; Szostak, J. W., Invitro Selection of Rna Molecules That Bind Specific Ligands. Nature 1990, 346, (6287), 818-822.
  • [36] Robertson, D. L.; Joyce, G. F., Selection Invitro of an Rna Enzyme That Specifically Cleaves Single- Stranded-DNA. Nature 1990, 344, (6265), 467-468.
  • [37] Tuerk, C.; Gold, L., Systematic Evolution of Ligands by Exponential Enrichment - Rna Ligands to Bacteriophage-T4 DNA-Polymerase. Science 1990, 249, (4968), 505-510.
  • [38] Iliuk, A. B.; Hu, L. H.; Tao, W. A., Aptamer in Bioanalytical Applications. Analytical Chemistry 2011, 83, (12), 4440-4452.[Crossref]
  • [39] Choi, J. H.; Chen, K. H.; Strano, M. S., Aptamercapped nanocrystal quantum dots: A new method for label-free protein detection. Journal of the American Chemical Society 2006, 128, (49), 15584-15585.[Crossref]
  • [40] Zhang, C. L.; Ji, X. H.; Zhang, Y.; Zhou, G. H.; Ke, X. L.; Wang, H. Z.; Tinnefeld, P.; He, Z. K., One-Pot Synthesized Aptamer-Functionalized CdTe:Zn2+ Quantum Dots for Tumor-Targeted Fluorescence Imaging in Vitro and in Vivo. Analytical Chemistry 2013, 85, (12), 5843-5849.[Crossref]
  • [41] Chi, C. W.; Lao, Y. H.; Li, Y. S.; Chen, L. C., A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: Application to labelfree thrombin detection. Biosensors & Bioelectronics 2011, 26, (7), 3346-3352.[Crossref]
  • [42] Revesz, E.; Lai, E. P. C.; DeRosa, M. C., Towards a FRET-based ATP biosensor using quantum dot/aptamer-based complexes. Journal of Biomolecular Structure & Dynamics 2007, 24, (6), 645-645.
  • [43] Wang, Y. H.; Bao, L.; Liu, Z. H.; Pang, D. W., Aptamer Biosensor Based on Fluorescence Resonance Energy Transfer from Upconverting Phosphors to Carbon Nanoparticles for Thrombin Detection in Human Plasma. Analytical Chemistry 2011, 83, (21), 8130-8137.[Crossref]
  • [44] Zhang, C. Y.; Johnson, L. W., Single Quantum-Dot- Based Aptameric Nanosensor for Cocaine. Analytical Chemistry 2009, 81, (8), 3051-3055.[Crossref]
  • [45] Hamula, C. L. A.; Guthrie, J. W.; Zhang, H. Q.; Li, X. F.; Le, X. C., Selection and analytical applications of aptamers. Trac-Trends in Analytical Chemistry 2006, 25, (7), 681-691.[Crossref]
  • [46] Medley, C. D.; Bamrungsap, S.; Tan, W. H.; Smith, J. E., Aptamer-Conjugated Nanoparticles for Cancer Cell Detection. Analytical Chemistry 2011, 83, (3), 727-734.[Crossref]
  • [47] Lassalle, H. P.; Marchal, S.; Guillemin, F.; Reinhard, A.; Bezdetnaya, L., Aptamers as Remarkable Diagnostic and Therapeutic Agents in Cancer Treatment. Current Drug Metabolism 2012, 13, (8), 1130-1144.[Crossref]
  • [48] Chereddy, N. R.; Thennarasu, S.; Mandal, A. B., A highly selective and efficient single molecular FRET based sensor for ratiometric detection of Fe3+ ions. Analyst 2013, 138, (5), 1334-1337.
  • [49] Lerner, E.; Hilzenrat, G.; Amir, D.; Tauber, E.; Garini, Y.; Haas, E., Preparation of homogeneous samples of double-labelled protein suitable for single-molecule FRET measurements. Analytical and Bioanalytical Chemistry 2013, 405, (18), 5983-5991.
  • [50] Sun, Y. J.; Meller, A., Probing Conformational Changes and Dynamics in eIF4A Helicase during RNA Unwinding by Single-Molecule FRET. Biophysical Journal 2013, 104, (2), 421a-421a.
  • [51] Lamboy, J. A.; Kim, H.; Dembinski, H.; Ha, T.; Komives, E. A., Single-Molecule FRET Reveals the Native-State Dynamics of the I kappa B alpha Ankyrin Repeat Domain. Journal of Molecular Biology 2013, 425, (14), 2578-2590.
  • [52] Clarke, S.; Pinaud, F.; Beutel, O.; You, C. J.; Piehler, J.; Dahan, M., Covalent Monofunctionalization of Peptide-Coated Quantum Dots for Single-Molecule Assays. Nano Letters 2010, 10, (6), 2147-2154.[Crossref]
  • [53] Zhang, C. Y.; Johnson, L. W., Microfluidic control of fluorescence resonance energy transfer: Breaking the FRET limit. Angewandte Chemie-International Edition 2007, 46, (19), 3482-3485.[Crossref]
  • [54] Barhoom, S.; Kaur, J.; Cooperman, B. S.; Smorodinsky, N. I.; Smilansky, Z.; Ehrlich, M.; Elroy-Stein, O., Quantitative single cell monitoring of protein synthesis at subcellular resolution using fluorescently labeled tRNA. Nucleic Acids Research 2011, 39, (19).[Crossref]
  • [55] Vet, J. A. M.; Majithia, A. R.; Marras, S. A. E.; Tyagi, S.; Dube, S.; Poiesz, B. J.; Kramer, F. R., Multiplex detection of four pathogenic retroviruses using molecular beacons. Proceedings of the National Academy of Sciences of the United States of America 1999, 96, (11), 6394-6399.
  • [56] Shirude, P. S.; Okumus, B.; Ying, L. M.; Ha, T.; Balasubramanian, S., Single-molecule conformational analysis of G-quadruplex formation in the promoter DNA duplex of the proto-oncogene C-kit. Journal of the American Chemical Society 2007, 129, (24), 7484-+.[Crossref]
  • [57] Ahmad, S., RNA world - Behind the scenes. Nature Reviews Genetics 2006, 7, (4), 242-243.[Crossref]
  • [58] Ha, T.; Zhuang, X. W.; Kim, H. D.; Orr, J. W.; Williamson, J. R.; Chu, S., Ligand-induced conformational changes observed in single RNA molecules. Proceedings of the National Academy of Sciences of the United States of America 1999, 96, (16), 9077-9082.
  • [59] Zhang, Y.; Zhang, C. Y., Sensitive Detection of microRNA with Isothermal Amplification and a Single- Quantum-Dot-Based Nanosensor. Analytical Chemistry 2012, 84, (1), 224-231.[Crossref]
  • [60] Konig, S. L. B.; Liyanage, P. S.; Sigel, R. K. O.; Rueda, D., Helicase-mediated changes in RNA structure at the single-molecule level. Rna Biology 2013, 10, (1), 133-148.[Crossref]
  • [61] Hengesbach, M.; Kim, N. K.; Feigon, J.; Stone, M. D., Single-Molecule FRET Reveals the Folding Dynamics of the Human Telomerase RNA Pseudoknot Domain. Angewandte Chemie-International Edition 2012, 51, (24), 5876-5879.[Crossref]
  • [62] Lee, G.; Hartung, S.; Hopfner, K. P.; Ha, T., Reversible and Controllable Nanolocomotion of an RNA-Processing Machinery. Nano Letters 2010, 10, (12), 5123-5130.[Crossref]
  • [63] Fedor, M. J.; Williamson, J. R., The catalytic diversity of RNAS. Nature Reviews Molecular Cell Biology 2005, 6, (5), 399-412.[Crossref]
  • [64] Karunatilaka, K. S.; Rueda, D., Single-molecule fluorescence studies of RNA: A decade’s progress. Chemical Physics Letters 2009, 476, (1-3), 1-10.
  • [65] Woodson, S. A., RNA Folding Pathways and the Self-Assembly of Ribosomes. Accounts of Chemical Research 2011, 44, (12), 1312-1319.[Crossref]
  • [66] Zhuang, X. W.; Bartley, L. E.; Babcock, H. P.; Russell, R.; Ha, T. J.; Herschlag, D.; Chu, S., A singlemolecule study of RNA catalysis and folding. Science 2000, 288, (5473), 2048-+.
  • [67] Nahas, M. K.; Wilson, T. J.; Hohng, S. C.; Jarvie, K.; Lilley, D. M. J.; Ha, T., Observation of internal cleavage and ligation reactions of a ribozyme. Nature Structural & Molecular Biology 2004, 11, (11), 1107-1113.
  • [68] Aubin-Tam, M. E.; Olivares, A. O.; Sauer, R. T.; Baker, T. A.; Lang, M. J., Single-Molecule Protein Unfolding and Translocation by an ATP-Fueled Proteolytic Machine. Cell 2011, 145, (2), 257-267.
  • [69] Chai, J. A.; Wong, L. S.; Giam, L.; Mirkin, C. A., Single-molecule protein arrays enabled by scanning probe block copolymer lithography. Proceedings of the National Academy of Sciences of the United States of America 2011, 108, (49), 19521-19525.
  • [70] Milles, S.; Tyagi, S.; Banterle, N.; Koehler, C.; Van- Delinder, V.; Plass, T.; Neal, A. P.; Lemke, E. A., Click Strategies for Single-Molecule Protein Fluorescence. Journal of the American Chemical Society 2012, 134, (11), 5187-5195.[Crossref]
  • [71] Miyake-Stoner, S. J.; Miller, A. M.; Hammill, J. T.; Peeler, J. C.; Hess, K. R.; Mehl, R. A.; Brewer, S. H., Probing Protein Folding Using Site-Specifically Encoded Unnatural Amino Acids as FRET Donors with Tryptophan. Biochemistry 2009, 48, (25), 5953-5962.[Crossref]
  • [72] Woori Bae, M.-G. C., Changbong Hyeon, Yeon-Kyun Shin, and Tae-Young Yoon, Real-Time Observation of Multiple-Protein Complex Formation with Single- Molecule FRET. J. Am. Chem. Soc. 2013, 135, (28), 10254-10257.
  • [73] Zhao, W. A.; Lam, J. C. F.; Chiuman, W.; Brook, M. A.; Li, Y. F., Enzymatic cleavage of nucleic acids on gold nanoparticles: A generic platform for facile colorimetric biosensors. Small 2008, 4, (6), 810-816.[Crossref]
  • [74] Liu, J. W.; Lu, Y., Non-base pairing DNA provides a new dimension for controlling aptamerlinked nanoparticles and sensors. Journal of the American Chemical Society 2007, 129, (27), 8634-8643.[Crossref]
  • [75] Yang, K.; Zhang, C. Y., Improved Sensitivity for the Electrochemical Biosensor with an Adjunct Probe. Analytical Chemistry 2010, 82, (22), 9500-9505.[Crossref]
  • [76] Yang, K.; Zhang, C. Y., Simple detection of nucleic acids with a single-walled carbon-nanotubebased electrochemical biosensor. Biosensors & Bioelectronics 2011, 28, (1), 257-262.[Crossref]
  • [77] Liu, J. W.; Lee, J. H.; Lu, Y., Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Analytical Chemistry 2007, 79, (11), 4120-4125.[Crossref]
  • [78] Shlyahovsky, B.; Li, D.; Weizmann, Y.; Nowarski, R.; Kotler, M.; Willner, I., Spotlighting of cocaine by an autonomous aptamer-based machine. Journal of the American Chemical Society 2007, 129, (13), 3814- +. [Crossref]
  • [79] Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M., Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials 2003, 2, (9), 630-638.[Crossref]
  • [80] Goldman, E. R.; Medintz, I. L.; Whitley, J. L.; Hayhurst, A.; Clapp, A. R.; Uyeda, H. T.; Deschamps, J. R.; Lassman, M. E.; Mattoussi, H., A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. Journal of the American Chemical Society 2005, 127, (18), 6744-6751.[Crossref]
  • [81] Prasuhn, D. E.; Feltz, A.; Blanco-Canosa, J. B.; Susumu, K.; Stewart, M. H.; Mei, B. C.; Yakovlev, A. V.; Loukov, C.; Mallet, J. M.; Oheim, M.; Dawson, P. E.; Medintz, I. L., Quantum Dot Peptide Biosensors for Monitoring Caspase 3 Proteolysis and Calcium Ions. Acs Nano 2010, 4, (9), 5487-5497.[Crossref]
  • [82] Ma, X. Y.; Wang, J.; Chen, B.; Fang, X. H., Single molecule fluorescence imaging of thrombin aptamer folding. Chemical Journal of Chinese Universities- Chinese 2007, 28, (10), 1852-1856.
  • [83] Snee, P. T.; Somers, R. C.; Nair, G.; Zimmer, J. P.; Bawendi, M. G.; Nocera, D. G., A ratiometric CdSe/ZnS nanocrystal pH sensor. Journal of the American Chemical Society 2006, 128, (41), 13320-13321.[Crossref]
  • [84] Suzuki, M.; Husimi, Y.; Komatsu, H.; Suzuki, K.; Douglas, K. T., Quantum dot FRET Biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination. Journal of the American Chemical Society 2008, 130, (17), 5720-5725.[Crossref]
  • [85] Galvez, E. M.; Zimmermann, B.; Rombach-Riegraf, V.; Bienert, R.; Graber, P., Fluorescence resonance energy transfer in single enzyme molecules with a quantum dot as donor. European Biophysics Journal with Biophysics Letters 2008, 37, (8), 1367-1371.[Crossref]
  • [86] Lee, N. K.; Koh, H. R.; Han, K. Y.; Lee, J.; Kim, S. K., Single-molecule, real-time measurement of enzyme kinetics by alternating-laser excitation fluorescence resonance energy transfer. Chemical Communications 2010, 46, (26), 4683-4685.[Crossref]
  • [87] Sako, Y.; Minoguchi, S.; Yanagida, T., Singlemolecule imaging of EGFR signalling on the surface of living cells. Nature Cell Biology 2000, 2, (3), 168-172.
  • [88] Fusco, D.; Accornero, N.; Lavoie, B.; Shenoy, S. M.; Blanchard, J. M.; Singer, R. H.; Bertrand, E., Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Current Biology 2003, 13, (2), 161-167.[Crossref]
  • [89] Murakoshi, H.; Iino, R.; Kobayashi, T.; Fujiwara, T.; Ohshima, C.; Yoshimura, A.; Kusumi, A., Singlemolecule imaging analysis of Ras activation in living cells. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, (19), 7317-7322.
  • [90] Kneipp, K.; Kneipp, H.; Kneipp, J., Surfaceenhanced Raman scattering in local optical fields of silver and gold nanoaggregatess - From singlemolecule Raman spectroscopy to ultrasensitive probing in live cells. Accounts of Chemical Research 2006, 39, (7), 443-450.[Crossref]
  • [91] Elf, J.; Li, G. W.; Xie, X. S., Probing transcription factor dynamics at the single-molecule level in a living cell. Science 2007, 316, (5828), 1191-1194.
  • [92] Itoh, R. E.; Kurokawa, K.; Ohba, Y.; Yoshizaki, H.; Mochizuki, N.; Matsuda, M., Activation of Rac and Cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Molecular and Cellular Biology 2002, 22, (18), 6582-6591.[Crossref]
  • [93] van der Velden, L. M.; Golynskiy, M. V.; Bijsmans, I. T. G. W.; van Mil, S. W. C.; Klomp, L. W. J.; Merkx, M.; van de Graaf, S. F. J., Monitoring Bile Acid Transport in Single Living Cells Using a Genetically Encoded Forster Resonance Energy Transfer Sensor. Hepatology 2013, 57, (2), 740-752.
  • [94] Tanimura, A.; Nezu, A.; Morita, T.; Tojyo, Y., FRET-based fluorescent probe for monitoring inositol 1,4,5-trisphosphate concentrations in a single living cells. Cell Structure and Function 2004, 29, 57-57.
  • [95] Harms, G. S.; Cognet, L.; Lommerse, P. H. M.; Blab, G. A.; Kahr, H.; Gamsjager, R.; Spaink, H. P.; Soldatov, N. M.; Romanin, C.; Schmidt, T., Singlemolecule imaging of L-type Ca2+ channels in live cells. Biophysical Journal 2001, 81, (5), 2639-2646.[Crossref]
  • [96] Di Fiori, N.; Meller, A., The Effect of Dye-Dye Interactions on the Spatial Resolution of Single- Molecule FRET Measurements in Nucleic Acids. Biophysical Journal 2010, 98, (10), 2265-2272.[Crossref]
  • [97] Zhang, C.; Johnson, L. W., Quantifying RNA-peptide interaction by single-quantum-dot-based nanosensor: an approach for drug screening. Analytical Chemistry 2007, 79, (20), 7775-7781.[Crossref]
  • [98] Zhang, C. Y.; Johnson, L. W., Quantum-dot-based nanosensor for RRE IIB RNA-Rev peptide interaction assay. Journal of the American Chemical Society 2006, 128, (16), 5324-5325.[Crossref]
  • [99] Benz, C.; Retzbach, H.; Nagl, S.; Belder, D., Protein-protein interaction analysis in single microfluidic droplets using FRET and fluorescence lifetime detection. Lab on a Chip 2013, 13, (14), 2808-2814.[Crossref]
  • [100] Smith, G. J.; Sosnick, T. R.; Scherer, N. F.; Pan, T., Efficient fluorescence labeling of a large RNA through oligonucleotide hybridization. Rna-a Publication of the Rna Society 2005, 11, (2), 234-239.[Crossref]
  • [101] Deniz, A. A.; Laurence, T. A.; Beligere, G. S.; Dahan, M.; Martin, A. B.; Chemla, D. S.; Dawson, P. E.; Schultz, P. G.; Weiss, S., Single-molecule protein folding: Diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, (10), 5179-5184.
  • [102] Heinze, K. G.; Jahnz, M.; Schwilley, P., Triple-color coincidence analysis: One step further in following higher order molecular complex formation. Biophysical Journal 2004, 86, (1), 506-516.[Crossref]
  • [103] Clamme, J. P.; Deniz, A. A., Three-color singlemolecule fluorescence resonance energy transfer. Chemphyschem 2005, 6, (1), 74-77.[Crossref]
  • [104] Zhang, C. Y.; Johnson, L. W., Homogenous rapid detection of nucleic acids using two-color quantum dots. Analyst 2006, 131, (4), 484-488.[Crossref]
  • [105] Sirinakis, G.; Ren, Y. X.; Gao, Y.; Xi, Z. Q.; Zhang, Y. L., Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy. Review of Scientific Instruments 2012, 83, (9), 093708: 1-9. 24 [Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.