PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 1 | 48-57
Tytuł artykułu

Toxicity and stability of silver nanoparticles to the green algaPseudokirchneriella subcapitatain boreal freshwater samples and growth media

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The toxicity of silver nanoparticles (AgNPs) to green alga Pseudokirchneriella subcapitata was evaluated in standard nutrient medium (ISO 8692), lake water samples from an oligotrophic and an eutrophic lake, and in lake waters supplemented with the standard nutrient medium. Prior to toxicity testing the agglomeration of polyvinylpyrrolidone (PVP) and starch-coated AgNPs was studied in each test medium. Agglomeration was studied by determining the hydrodynamic diameter (HDD). The HDDs for the PVP- and starch-capped AgNP dispersions in deionized water were 40 and 175 nm respectively, indicating the presence of agglomerates. The HDDs of AgNPs remained stable throughout the exposure time in all media used for the toxicity tests. The algae growth inhibition test was performed as a microplate modification of the ISO method using fluorescence detection. The effect of concentration at a 50% inhibition value for PVPcoated AgNPs in standard medium was 115 ± 3 μg/L, and for starchcoated AgNPs 51 ± 32 μg/L. The eutrophic freshwater conditions suppressed the toxicity of the PVP- coated AgNPs, but not the starchcoated NPs. This finding emphasizes the importance of using different AgNPs and natural waters in assessing the environmental risks of silver nanoparticles.
Wydawca

Rocznik
Tom
1
Strony
48-57
Opis fizyczny
Daty
otrzymano
2013-01-04
zaakceptowano
2013-05-29
online
2013-07-29
Twórcy
autor
autor
  • Finnish Environment Institute,
    Laboratory centre, P.O. Box 140,
    FI-00251 Helsinki, Finland
  • Finnish Environment Institute,
    Laboratory centre, P.O. Box 140,
    FI-00251 Helsinki, Finland
Bibliografia
  • [1] S.N. Luoma. Silver nanotechnologies and the environment:old problems or new challenges. Project on EmergingNanotechnologies, 15 (2008).
  • [2] B. Naumann, M. Eberius, K. Appenroth. Growth rate baseddose-response relationships and EC-values of ten heavymetals using the duckweed growth inhibition test (ISO20079) with Lemna minor L. clone St. J. Plant. Phys., 164,1656-1664 (2007).
  • [3] Y. Yu-Nam, J.R. Lead. Manufactured nanoparticles: anoverview of their chemistry, interactions and potentialenvironmental implications. Sci. Tot. Environ., 400, 396-414(2008).[WoS]
  • [4] C. Marambio-Jones, E.M.V. Hoek. A review of the antibacterialeffects of silver nanomaterials and potential implications forhuman health and the environment. J. Nanopart. Res., 12,1531-1551 (2010).[Crossref][WoS]
  • [5] K.H. Domsch. Effects of pesticides and heavy metals onbiological processes in soil. Plant Soil., 76, 367-378 (1984).
  • [6] Q. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J. Kim. Amechanistic study of the antibacterial effect of silver ions onEscherichia coli and Staphylococcus aurelius. J. Biomed.Mater Res., 52, 662-668 (2000).
  • [7] L. Geranio, M. Heuberger, B, Nowack. The Behaviour ofsilver nanotextiles during washing. Environ. Sci. Technol., 43,8113-8118 (2009).[Crossref][PubMed][WoS]
  • [8] T.M. Benn, P. Westerhoff. Nanoparticle silver released intowater from commercially available sock fabrics. Environ. Sci.Technol., 42, 4133-4139 (2008).[PubMed][Crossref][WoS]
  • [9] R. Kaegi, B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller,R. Vonbank, M. Boller, M. Burkhardt. Release of silvernanoparticles from outdoor facades. Environ. Poll., 158,2900-2905 (2010).
  • [10] E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N.Odzak, et al. Toxicity of silver nanoparticles to Chlamydonasreinhardtii. Environ. Sci. Technol., 42, 8959-8964 (2008).[PubMed][WoS][Crossref]
  • [11] P.V Asharani, Y.L. Wu, Z. Gong, S. Valiyaveettil. Toxicity ofsilver nanoparticles in zebrafish models. Nanotechnology, 19,255102-255109 (2008).[WoS][Crossref][PubMed]
  • [12] C. Levard, B.C. Reinsch, F.M Michel, C. Ournahi, G.V. Lowry,G.E.jr. Brown. Sulfidation processes of PVP-coated silvernanoparticles in aqueous solution: Impact on dissolutionrate. Environ. Sci. Technol., 45, 5260-5266 (2011).[Crossref][WoS]
  • [13] O. Choi, Z. Hu. Size dependent and reactive oxygen speciesrelated nanosilver toxicity to nitrifying bacteria. Environ. Sci.Technol., 42, 4583-4588 (2008).[WoS][Crossref]
  • [14] S. Pal, Y.K. Tak, Y.M. Song. Does the antimicrobial activity ofsilver nanoparticles depend on the shape of the nanoparticle?A study of the gram-negative bacterium Escherichia coli.Appl. Environ. Microbiol., 73, 1712-1720 (2007).[WoS]
  • [15] A.M El Badawy, T.P. Luxton, G. S. Rendahandi, K.G.Scheckel, M.T. Suidann, T.M. Thabet. Impact of environmentalconditions (pH, ionic strength, and electrolyte type) on thesurface charge and aggregation of silver nanoparticlessuspensions. Environ. Sci. Technol., 44, 1260-1266 (2010).[WoS][Crossref]
  • [16] L. Kvitek, A. Panáček, J. Soukupová, M. Kolár, R. Večeřová,R. Prucek R, et al. Effects of surfactants and polymers onstability and antibacterial activity of silver nanoparticles (NPs).J. Phys. Chem., 112, 5825-5834 (2008).[WoS]
  • [17] R.D. Handy, N. van den Brinck, M. Chappel, M. Mühling,R. Behr, M. Dušinská, et al. Practical considerations for conducting ecotoxicity test methods with manufacturednanomaterials: What have we learnt so far? Ecotox., 21, 933-972 (2012).[Crossref]
  • [18] M. Sillanpää, T. Paunu, P. Sainio. Aggregation and depositionof engineered TiO2 nanoparticles in natural fresh andbrackish waters. J. Phys. Conf. Ser., 304, , 012018 (2011).
  • [19] R.F. Domingos, M.A. Baalousha, Y. Ju-Nam, M.M. Reid,N. Tufenkji, J.R. Lead, K.J. Wilkinson. Characterizingmanufactured nanoparticles in the environment: multimethoddetermination of particle sizes. Environ. Sci. Technol., 43,7277-7284 (2009).[Crossref][WoS]
  • [20] J. Liu, R.B. Hurt. Ion release kinetics and particle persistencein aqueous nano-silver colloids. Environ. Sci. Technol., 44,2169-2175 (2010).[WoS][Crossref]
  • [21] I. Römer, T.A. White, M. Baalousha, K. Chipman, M.R. Viant,J.R. Lead. Aggregation and dispersion of silver nanoparticlesin exposure media for aquatic toxicity tests. J. Chromatogr.A, 1218, 4226-4233 (2011).[WoS]
  • [22] M. Tejamaya, I. Römer, R.C. Merrifield, J.R. Lead. Stability ofcitrate, PVP, and PEG coated silver nanoparticles in ecotoxicologymedia. Environ. Sci. Technol., 46, 7011-7017 (2012).[WoS][PubMed][Crossref]
  • [23] J. McLaughlin, J.J. Bonzongo. Effects of natural waterchemistry on nanosilver behaviour and toxicity to Ceriodaphnia dubia and Pseudokirchneriella subcapitata.Environ .Tox. Chem., 31, 168-175 (2012).[WoS][Crossref]
  • [24] R.J. Griffith, J. Luo, J. Gao, J. Bonzongo, D.S. Barber. Effectsof particle composition and species on toxicity of metallicnanomaterials in aquatic organism. Environ. Tox. Chem., 27,1972-1978 (2012).[WoS]
  • [25] A. Oukarrum, S. Bras, F, Perreault, R, Popovic. Inhibitoryeffects of silver nanoparticles in two green algae, Chlorellavulgaris and Dunaliella tertiolecta. Ecotoxicol. Environ. Saf.,78, 80-85 (2011).
  • [26] J. Gao, S. Youn, A. Hovsepyan, V.L. Llaneza, Y. Wang, G.Bitton, et al. Dispersion and toxicity of selected manufacturednanomaterials in natural river water samples: Effects of waterchemical composition. Environ. Sci. Technol., 43, 3322-3328(2009).[WoS][Crossref]
  • [27] D. Lee, C. Fortin, P.G.C. Campbell. Contrasting effectsof chloride on the toxicity of silver to two green algae,Pseudokirchneriella subcapitata and Chlamydomon asreinhardtii. Aquat. Toxicol., 75, 127-135 (2005).
  • [28] A.J. Kennedy, M.S. Hull, A.J. Bednar, J.D. Goss, C.G. Goss,J.L. Bouldin, et al. Fractionating nanosilver: Importance fordetermining toxicity to aquatic test organisms. Environ. Sci.Technol., 44, 9571-9577 (2010).[WoS][Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_nanome-2013-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.