Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 | 1 |
Tytuł artykułu

Focused Ion Beam Processing of Superconducting Junctions and SQUID Based Devices

Treść / Zawartość
Warianty tytułu
Języki publikacji
Focused ion beam (FIB) has found a steady and growing use as a tool for fabrication, particularly in the length-scale of micrometres down to nanometres. Traditionally more commonly used for materials characterisation, FIB is continually finding new research areas in a growing number of laboratories. For example, over the last ten years the number of FIB instruments in the U.K. alone has gone from single figures, largely supplied by a single manufacturer, to many tens of instruments supplied by several competing manufacturers. Although the smaller of the two research areas, FIB fabrication has found itself to be incredibly powerful in the modification and fabrication of devices for all kinds of experimentation. Here we report our use of FIB in the production of Superconducting QUantum Interference Devices (SQUIDs) and other closely related devices for metrological applications. This is an area ideally suited to FIB fabrication as the required precision is very high, the number of required devices is relatively low, but the flexibility of using FIB means that a large range of smallbatch, and often unique, devices can be constructed quickly and with very short lead times.
Słowa kluczowe

Opis fizyczny
  • Advanced Technology
    Institute, University of Surrey, Guildford, Surrey, GU2 7XH, U.K.,
  • National Physical
    Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, U.K.
  • National Physical
    Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, U.K.
  • National Physical
    Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, U.K.
  • [1] Clarke J., Braginski A., ed., The SQUID Handbook Fundamentalsand Technology of SQUIDs and SQUID Systems, 2004, 1, NewYork: Wiley–VCH.
  • [2] Koelle D., Kleiner R., Ludwig F., Danster E., Clarke J.,High-transition-temperature superconducting quantuminterference devices, Rev. Mod. Phys., 1999, 71 631; Erratum,Rev. Mod. Phys., 1999, 71, 1249.
  • [3] Gallop J.C., SQUIDs: some limits to measurement, Supercond.Sci. Technol., 2003, 16, 1575.[Crossref]
  • [4] Hilgenkamp H., Mannhart J., Grain boundaries in high-Tcsuperconductors, Rev. Mod. Phys., 2002, 74, 485.
  • [5] Veauvy C., Hasselbach K., Mailly D., Scanningμ-superconduction quantum interference device forcemicroscope, Rev. Sci. Instrum., 2002, 73, 3825-3830.
  • [6] Hilgenkamp H., Ariando, Smilde H.J., Blank D., Rijnders G.,Rogalla H., et al., Ordering and manipulation of the magneticmoments in large-scale superconducting pi-loop arrays,Nature, 2003, 422, 50-53.
  • [7] Hao L., Macfarlane J.C., Lam S.K.H., Foley C.P., Josephs-FranksP., Gallop J.C., Inductive Sensor Based on Nano-scale SQUIDs,IEEE Trans. Appl. Supercond., 2005, 15, 514-517.
  • [8] Awschalom D.D., Rozen J.R., Ketchen M.B., Gallagher W.J.,Kleinsasser A.W., Sandstrom R.L., Bumble B., Low‐noisemodular microsusceptometer using nearly quantum limited dcSQUIDs, Appl. Phys. Lett., 1986, 53, 2108.
  • [9] Lam S.K.H., Tilbrook D.L., Development of a niobium nanosuperconductingquantum interference device for the detection ofsmall spin populations, Appl. Phys. Lett., 2003, 82, 1078-1080.
  • [10] Cleuziou J.P., Wernsdorfer W., Bouchiat V., Ondarcuhu T.,Nonthioux M., Carbon nanotube superconducting quantuminterference device, Nat. Nanotechnol., 2006, 1, 53-59.
  • [11] Gallop J., Josephs-Franks P.W., Davis J., Hao L., Macfarlane J.,Miniature dc SQUID devices for the detection of single atomicspin-flips, Physica C, 2002, 368, 109-113.
  • [12] Hao L., Gallop J.C., Cox D., Romans E., Macfarlane J.C., ChenJ., Focused Ion Beam NanoSQUIDs as Novel NEMS ResonatorReadouts, IEEE Trans. Appl. Supercond., 2009, l19, 693-696.[WoS]
  • [13] Troeman A.G.P., Derking H., Borger B., Pleikies J., Veldhuis D.,Hilgenkamp H., NanoSQUIDs Based on Niobium Constrictions,Nano Lett., 2007, 7, 2152-2156.[Crossref][WoS]
  • [14] Hao L., Macfarlane J.C., Gallop J.C., Romans E., Cox D., HutsonD., Chen J., Spatial resolution assessment of Nano-SQUIDsmade by focused ion beam, IEEE Trans. Appl. Supercond., 2007,17, 742-745.[WoS][Crossref]
  • [15] Hao L., Macfarlane J.C., Gallop J.C., Cox D., Beyer J., DrungD., Schurig T., Measurement and noise performance ofnano-superconducting-quantum-interference devicesfabricated by focused ion beam, Appl. Phys. Lett., 2008, 92,192507.
  • [16] Calculated using SRIM (Stopping Range of Ions in Matter)
  • [17] Additional calculations using SUPRE (Surrey University SputterProfile Resolution and Energy deposition programme).
  • [18] Nanometer Pattern Generation System (NPGS).
  • [19] Hao L., Aßmann C., Gallop J.C., Cox D.C., Ruede F., KazakovaO., et al., Detection of Single Magnetic Nanobead with aNano-Superconducting Quantum Interference Device, Appl.Phys. Lett., 2011, 98, 092504.
  • [20] Vasyukov D., Anahory Y., Embon L., Halbertal D., CuppensJ., Neeman L., et al., A scanning superconducting quantuminterference device with single electron spin sensitivity, Nat.Nanotechnol., 2013, 8, 639-644.[PubMed][WoS][Crossref]
  • [21] Hao L., Cox D.C., Gallop J.C., Chen J., Rozhko S., Blois A.,Romans E.J., Coupled NanoSQUIDs and Nano-ElectromechanicalSystems (NEMS) Resonators, IEEE Trans. Appl.Supercond., 2013, 23, 1800304.[WoS][Crossref]
  • [22] Jin Y.R, Song X,H., Zhang D.L., Grain-size dependence ofsuperconductivity in dc sputtered Nb films, Science inChina Series G, Physics Mechanics & Astronomy, 2009, 52,1289-1292.[WoS]
  • [23] Bose S., Raychaudri P., Banerjee R., Vasa P., Ayyub P.,Mechanism of the Size Dependence of the SuperconductingTransition of Nanostructured Nb, Phys. Rev. Lett., 2005, 95,147003.
  • [24] Work currently in progress.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.