PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 1 | 1 |
Tytuł artykułu

Heterococcus sp. DN1draft genome: focus on cold tolerance and lipid production

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A yellow-green alga, Heterococcus sp. DN1, was isolated from the snows of the Rocky Mountains in Colorado. Heterococcus sp. DN1 displays properties such as abundant intracellular lipid accumulation and cold tolerance. Here we describe a number of genes discovered from a draft genome constructed from Illumina GAIIx short reads. The genome of Heterococcus sp. DN1 is 170 Mb, with 29,080 genes giving hits within NCBI using Tera-BLASTx. We show that Heterococcus sp. DN1 has a large number of putative genes involved in lipid metabolism and contains the required genes for the biosynthesis of eicosapentaenoic acid, a lipid required for nutrition in humans. A number of putative cold-tolerance genes are present in the genome as well.
Słowa kluczowe
Wydawca

Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
otrzymano
2013-01-03
zaakceptowano
2013-10-24
online
2013-12-16
Twórcy
  • Department of Plant Biology, University
    of Minnesota, 250 Biological Sciences
    Building, 1440 Gortner Avenue, St. Paul,
    MN 55455, nels5133@umn.edu
autor
  • Minnesota Supercomputing Institute,
    University of Minnesota, 117 Pleasant
    Street, Southeast Minneapolis,
    MN 55455
  • Department of Plant Biology, University
    of Minnesota, 250 Biological Sciences
    Building, 1440 Gortner Avenue, St. Paul,
    MN 55455
Bibliografia
  • [1] Nelson DR, Mengistu S, Ranum P, Celio G, Mashek M,Mashek D, Lefebvre PA. New lipid-producing, cold-tolerantyellow-green alga isolated from the Rocky Mountains ofColorado. Biotech Prog. 2013 Jul-Aug;29(4):853-61[Crossref]
  • [2] Darling RB, Friedmann EI, Broady PA. Heterococcusendolithicus sp. nov. (Xanthophyceae) and other terrestrialHeterococcus species from Antarctica - Morphologicalchanges during life-history and response to temperature. JPhycol. 1987;23:598-607.[PubMed]
  • [3] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improvingthe sensitivity of progressive multiple sequence alignment throughweighting, position-specific gap penalties and weight matrixchoice. Nucleic Acids Res. 1994 Nov;11;22(22):4673-80.[Crossref]
  • [4] Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, SettlageRE, Boore JL, Posewitz MC. Draft genome sequence andgenetic transformation of the oleaginous alga Nannochloropisgaditana. Nat Commun. 2012 Feb 21;3:686-96.[WoS][Crossref]
  • [5] Cock JM, Coelho SM, Brownlee C, Taylor AR. The Ectocarpusgenome sequence: Insights into brown algal biology and theevolutionary diversity of the eukaryotes. New Phytol. 2010Oct;188(1):1-4.[WoS]
  • [6] Harris E. The Chlamydomonas sourcebook. A comprehensiveguide to biology and laboratory use. Academic Press, SanDiego, CA. 1989;xiv:780.
  • [7] Torto-Alalibo T, Collmer CW, Gwinn-Giglio M, Lindeberg M,Meng S, Chibucos MC, Tseng TT, Lomax J, Biehl B, Ireland A,Bird D, Dean RA, Glasner JD, Perna N, Setubal JC, CollmerA, Tyler BM. Unifying themes in microbial associations withanimal and plant hosts described using the gene ontology.Microbiol Mol Biol Rev. 2010 Dec;74(4):479-503.[WoS][Crossref]
  • [8] Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ,Birol I. ABySS: A parallel assembler for short read sequencedata. Genome Res. 2009 Jun;19(6):1117-23.[Crossref][PubMed][WoS]
  • [9] Borodovsky M, Lomsadze A. Eukaryotic gene predictionusing GeneMark.hmm-E and GeneMark-ES. Curr ProtocBioinformatics. 2011 Sep;Chapter 4:Unit 4.6.1-10.
  • [10] Tirichine L, Bowler C. Decoding algal genomes: Tracingback the history of photosynthetic life on earth. Plant J. 2011Apr;66(1):45-57.[Crossref][PubMed][WoS]
  • [11] Yang EC, Boo GH, Kim HJ, Cho SM, Boo SM, AndersenRA, Yoon HS. Supermatrix data highlight the phylogeneticrelationships of photosynthetic stramenopiles. Protist 2012Mar;163(2):217-31.[WoS]
  • [12] Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS,Bhattacharya D, Moustafa A, Manhart JR. Horizontal genetransfer of the algal nuclear gene psbO to the photosyntheticsea slug Elysia chlorotica. Proc Natl Acad Sci USA. 2008;105:17867–17871.[Crossref][WoS]
  • [13] Davies PL, Baardsnes J, Kuiper MJ, Walker VK. Structureand function of antifreeze proteins. Philos Trans R Soc LondB Biol Sci. 2002 Jul;357(1423):927-35.
  • [14] Karantonis HC, Nomikos T, Demopoulos CA. Triacylglycerolmetabolism. Curr Drug Targets. 2009 Apr;10(4):302-19.[WoS][PubMed][Crossref]
  • [15] Kasana RC, Gulati A. Cellulases from psychrophilicmicroorganisms: A review. J Basic Microbiol. 2011Dec;51(6):572-9..[Crossref]
  • [16] Carvajal-Rondanelli PA, Marshall SH, Guzman F. Antifreezeglycoprotein agents: Structural requirements for activity. J SciFood Agric. 2011 Nov;91(14):2507-10.[WoS]
  • [17] Wilson PW, Beaglehole D, Devries AL. Antifreeze glycopeptideadsorption on single crystal ice surfaces using ellipsometry.Biophys J. 1993 Jun;64(6):1878-84.[PubMed][Crossref]
  • [18] Raymond JA. Algal ice-binding proteins change thestructure of sea ice. Proc Natl Acad Sci U S A. 2011 Jun14;108(24):E198.
  • [19] Lang I, Hodac L, Friedl T, Fuessner I. Fatty acid profiles andtheir distribution patterns in microalgae: a comprehensiveanalysis of more than 2000 strains from the SAG culturecollection. BMC Plant Biology. 2011; 11:124.[WoS]
  • [20] Li YT, Li MT, Fu CH, Zhou PP, Liu JM, Yu LJ. Improvement ofarachidonic acid and eicosapentaenoic acid production byincreasing the copy number of the genes encoding fatty aciddesaturase and elongase into Pichia pastoris. BiotechnolLett. 2009 Jul;31(7):1011-7.[Crossref][PubMed][WoS]
  • [21] Keasling JD. Manufacturing molecules through metabolicengineering. Science. 2010 Dec 3;330(6009):1355-8.[WoS]
  • [22] Tavares S, Grotkjaer T, Obsen T, Haslam RP, Napier JA,Gunnarsson N. Metabolic engineering of Saccharomycescerevisiae for production of eicosapentaenoic acid, usinga novel {delta}5-desaturase from Paramecium tetraurelia.Appl Environ Microbiol. 2011 Mar;77(5):1854-61.[WoS]
  • [23] Starai VJ, Escalante-Semerena JC. Acetyl-coenzymeA synthetase (AMP forming). Cell Mol Life Sci. 2004Aug;61(16):2020-30.[PubMed]
  • [24] Kaur J, Tiwari R, Kumar A, Singh N. Bioinformatic analysis ofLeishmania donovani long-chain fatty acid-CoA ligase as anovel drug target. Mol Biol Int. 2011:278051.[PubMed]
  • [25] Wang ZT, Ullrich N, Joo S, Waffenschmidt S, GoodenoughU. Algal lipid bodies: Stress induction, purification, andbiochemical characterization in wild-type and starchlessChlamydomonas reinhardtii. Eukaryot Cell. 2009;8:1856–1868.[PubMed][Crossref][WoS]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_micsm-2013-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.