PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 1 | 1 |
Tytuł artykułu

Co-evolution in context: The importance of studying gut microbiomes in wild animals

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Because the gut microbiota contributes to host nutrition, health and behavior, and gut microbial community composition differs according to host phylogeny, co-evolution is believed to have been an important mechanism in the formation of the host-gut microbe relationship. However, current research is not ideal for examining this theme. Most studies of the gut microbiota are performed in controlled settings, but gut microbial community composition is strongly influenced by environmental factors. To truly explore the co-evolution of host and microbe, it is necessary to have data describing host-microbe dynamics in natural environments with variation in factors such as climate, food availability, disease prevalence, and host behavior. In this review, I use current knowledge of host-gut microbe dynamics to explore the potential interactions between host and microbe in natural habitats. These interactions include the influence of host habitat on gut microbial community composition as well as the impacts of the gut microbiota on host fitness in a given habitat. Based on what we currently know, the potential connections between host habitat, the gut microbiota, and host fitness are great. Studies of wild animals will be an essential next step to test these connections and to advance our understanding of host-gut microbe co-evolution.
Słowa kluczowe
Wydawca

Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
otrzymano
2013-08-05
zaakceptowano
2013-09-29
online
2013-10-22
Twórcy
  • Program in Ecology Evolution and
    Conservation Biology, University of
    Illinois at Urbana-Champaign,
    Urbana, IL, USA, 61801, amato1@illinois.edu
  • Department of Anthropology,
    University of Illinois at Urbana-Champaign,
    Urbana, IL, USA, 61801
Bibliografia
  • [1] Forsythe P., Sudo N., Dinan T., Taylor V.H., Bienenstock J.Mood and gut feelings. Brain Behav Immun 2010; 24: 9-16
  • [2] Flint H.J., Bayer E.A. Plant cell wall breakdown by anaerobicmicroorganisms from the mammalian digestive tract. Ann NYAcad Sci 2008: 280-288
  • [3] Flint H.J., Duncan S.H., Louis P., Impact of intestinal microbialcommunities upon health., In: Rosenberg E, Gophna U.(Eds.), Beneficial Microorganisms in Multicellular Life FormsSpringer, Berlin, 2011 243-252.
  • [4] Sekirov I., Russel S.I., Antunes C.M., Finlay B.B. Gutmicrobiota in health and disease. Physiol Rev 2010; 90: 859-904
  • [5] Hooper L.V., Littman D.R., Macpherson A.J. Interactionsbetween the microbiota and the immune system. Science2012; 336: 1268-1273
  • [6] Hooper L.V., Midtvedt T., Gordon J.I. How host-microbialinteractions shape the nutrient environment of the mammalianintestine. Annu Rev Nutr 2002; 22: 283-307
  • [7] Dethlefsen L., McFall-Ngai M., Relman D.A. An ecologicaland evolutionary perspective on human-microbe mutualismand disease. Nature 2007; 449: 811-818
  • [8] Sudo N. Stress and gut microbiota: does postnatal microbialcolonization programs the hypothalamic-pituitary-adrenalsystem for stress response? Int Cong Ser 2006; 1287: 350-354
  • [9] Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., YuX.N., et al. Postnatal microbial colonization programs thehypothalamic-pituitary-adrenal system for stress response inmice. J Physiol 2004; 558: 263-275
  • [10] Sharon G., Segal D., Ringo J.M., Hefetz A., Zilber-RosenbergI., Rosenberg E. Commensal bacteria play a role in matingpreference of Drosophila melanogaster. Proc Natl Acad SciUSA 2010; 107: 20051
  • [11] Hill M.J. Intestinal flora and endogenous vitamin synthesis.Eur J Cancer Prev 1997; 6: S43-S45
  • [12] Neish A.S. Microbes in gastrointestinal health and disease.Gastroenterol 2009; 136: 65-80
  • [13] Brinkworth G.D., Noakes M., Clifton P.M., Bird A.R.Comparative effects of very low-carbohydrate, high-fat andhigh-carbohydrate, low-fat weight-loss diets on bowel habitand faecal short-chain fatty acids on bacterial populations.Br J Nutr 2009; 101: 1493-1502
  • [14] Donohoe D.R., Garge N., Zhang X., Sun W., O’Connell T.M.,Bunger M.K., et al. The microbiome and butyrate regulateenergy metabolism and autophagy in the mammalian colon.Cell Metab 2011; 13: 517-526
  • [15] Duncan S.H., Belenguer A., Holtrop G., Johnstone A.M., FlintH.J., Lobley G.E. Reduced dietary intake of carbohydratesby obese subjects results in decreased concentrations ofbuyrate and butyrate-producing bacteria in feces. ApplEnviron Microbiol 2007; 73: 1073-1078
  • [16] Duncan S.H., Scott K.P., Ramsay A.G., al. e. Effects ofalternative dietary substrates on competition betweenhuman colonic bacteria in an anaerobic fermentor system.Appl Environ Microbiol 2003; 69: 1136-1142
  • [17] Macfarlane G.T., Cummings J.H., Allison C. Proteindegradation by human intestinal bacteria. Microbiology1986; 132: 1647-1656
  • [18] Macfarlane S., Macfarlane G.T. Regulation of short-chainfatty acid production. Proc Nutr Soc 2003; 65: 67-72
  • [19] Fraser M.D., Theobald V.J., Davies D.R., Moorby J.M. Impactof diet selected by cattle and sheep grazing heathlandcommunities on nutrient supply and faecal micro-floraactivity. Agric Ecosyst Environ 2009; 129: 367-377
  • [20] Flint H.J., Scott K.P., Duncan S.H., Louis P., Forano E.Microbial degradation of complex carbohydrates in the gut.Gut Microbes 2012; 3: 289-306
  • [21] Nicholson J.K., Holmes E., Kinross J., Burcelin R., GibsonG., Jia W., et al. Host-gut microbiota metabolic interactions.Science 2012; 336: 1262-1267
  • [22] Secor S.M. Regulation of digestive performance: a proposedadaptive response. Comp Biochem Physiol 2001; 128: 565-577
  • [23] Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., MardisE.R., Gordon J.I. An obesity-associated gut microbiome withincreased capacity for energy harvest. Nature 2006; 444:1027-1031
  • [24] Mackie R.I., Sghir A., Gaskins H.R. Developmental microbialecology of the neonatal gastrointestinal tract. Am J Clin Nutr1999; 69: 1035S-1045S
  • [25] Turnbaugh P.J., Ridaura V.K., Faith J.J., Rey F.E., Knight R.,Gordon H.A. The effect of diet on the human gut microbiome:A metagenomic analysis in humanized gnotobiotic mice. SciTransl Med 2009; 1: 6ra14
  • [26] Muegge B.D., Kuczynski J., Knights D., Clemente J.C.,Gonzalez A., Fontana L., et al. Diet drives convergence ingut microbiome functions across mammalian phylogeny andwithin humans. Science 2011; 332: 970-974
  • [27] Wu G.D., Chen J., Hoffmann C., Bittinger K., Chen Y.Y.,Keilbaugh S.A., et al. Linking long-term dietary patterns withgut microbial enterotypes. Science 2011; 334: 105-108
  • [28] Benson A.K., Kelly S.A., Legge R., Ma F., Low S.J., Kim J.,et al. Individuality in gut microbiota composition is a complexpolygenic trait shaped by multiple environmental and hostgenetic factors Proc Natl Acad Sci USA 2010; 107: 18933-18938
  • [29] Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T.,Mende D.R., et al. Enterotypes of the human gut microbiome.Nature 2011; 473: 174-180
  • [30] Costello E.K., Stagaman K., Dethlefsen L., Bohannan B.J.,Relman D.A. An application of ecological theory toward anunderstanding of the human microbiome. Science 2012;336: 1255-1262
  • [31] Friswell M.K., Gika H., Stratford I.J., Theodoridis G., TelferB., Wilson I.D., et al. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice.PLoS One 2010; 5: e8584
  • [32] Buhnik-Rosenblau K., Danin-Poleg Y., Kashi Y., Hostgenetics and gut microbiota., In: Rosenberg E, Gophna U.(Eds.), Beneficial Microorganisms in Multicellular Life FormsSpringer, Berlin, 2011 281-295.
  • [33] Zoetendal E.G., Akkermans A.D.L., Akkermans-va VlietW.M., de Visser J.A.G.M., De Vos W.M. The host genotypeaffects the bacterial community in the human gastrointestinaltract. Microb Ecol Health Dis 2001; 13: 129-134
  • [34] Ley R.E., Hamady M., Lozupone C., Turnbaugh P.J., RameyR.R., Bircher J.S., et al. Evolution of mammals and their gutmicrobes. Science 2008; 320: 1647-1651
  • [35] Ley R.E., Lozupone C., Hamady M., Knight R., GordonH.A. Worlds within worlds: Evolution of the vertebrate gutmicrobiota. Nature 2008; 6: 776-788
  • [36] Yeoman C.J., Chia N., Yildirim S., Berg Miller M.E., Kent A.,Stumpf R.M., et al. Towards an evolutionary model of animalassociatedmicrobiomes. Entropy 2011; 13: 570-594
  • [37] Kau A.L., Abern P.P., Griffin N.W., Goodman A.L., GordonJ.I. Human nutrition, the gut microbiome and the immunesystem. Nature 2011; 474: 327-336
  • [38] Savage D.C. Microbial ecology of the gastrointestinal tract.Annu Rev Microbiol 1977; 31: 107-133
  • [39] Schramm A., Davidson S.K., Dodsworth J.A., Drake H.L.,Stahl D.A., Dubilier N. Acidovorax-like symbionts in thenephridia of earthworms. Environ Microbiol 2003; 5: 804-809
  • [40] McFall-Ngai M. Adaptive immunity: Care for the community.Nature 2007; 445: 153
  • [41] Backhed F., Manchester J.K., Semenkovich C.F., GordonJ.I. Mechanisms underlying the resistance to diet-inducedobesity in germ-free mice. Proc Natl Acad Sci USA 2007;104: 979-984
  • [42] Bauer H., Horowitz R.E., Levenson S.M., Popper H. Theresponse of the lymphatic tissue to the microbial flora.Studies on germfree mice. Am J Pathol 1963; 42: 471-483[PubMed]
  • [43] Faith J.J., McNulty N.P., Rey F.E., Gordon J.I. Predicting ahuman gut microbiota’s response to diet in gnotobiotic mice.Science 2011; 333: 101-104
  • [44] Armougom F., Henry M., Vialettes B., Raccah D., Raoult D.Monitoring bacterial community of human gut microbiotareveals an increase in Lactobacillus in obese patients andMethanogens in aneroxic patients. PLoS One 2009; 4: e7125
  • [45] Costello E.K., Lauber C.L., Hamady M., Fierer N., GordonJ.I., Knight R. Bacterial community variation in human bodyhabitats across space and time. Science 2009; 326: 1694-1697
  • [46] Kurokawa K., Itoh T., Kuwahara T., Oshima K., Toh H.,Toyoda A., et al. Comparative metagenomics revealedcommonly enriched gene sets in human gut microbiomes.DNA Research 2007; 14: 169-181
  • [47] Larsen N., Vogensen F.K., van den Berg F.W.J., Nielsen D.S.,Andreasen A.S., Pedersen B.K., et al. Gut microbiota inhuman adults with type 2 diabetes differs from non-diabeticadults. PLoS One 2010; 5: e9085
  • [48] Ley R.E. Obesity and the human microbiome. Curr OpinGastroenterol 2010; 26: 5-11
  • [49] Mariat D., Firmesse O., Levenez F., Guimaraes V.D., SokolH., Dore J., et al. The Firmicutes/Bacteroidetes ratio of thehuman microbiota changes with age. BMC Microbiol 2009;9: 123-129
  • [50] Roeselers G., Mittge E.K., Stephens W.Z., Parichy D.M.,Cavanaugh C.M., Guillemin K., et al. Evidence for a core gutmicrobiota in the zebrafish. ISME J 2011; 5: 1595-1608
  • [51] Xenoulis P.G., Gray P.L., Brightsmith D., Palculict B., HoppesS., Steinger J.M., et al. Molecular characterization of thecloacal microbiota of wild and captive parrots. Vet Microbiol2010; 146: 320-325
  • [52] Nelson T.M., Rogers T.L., Carlini A.R., Brown M.V. Diet andphylogeny shape the gut microbiota of Antarctic seals: Acomparison of wild and captive animals. Environ Microbiol2012; 15: 1132-1145
  • [53] Amato K.R., Yeoman C.J., Kent A., Carbonero F., RighiniN., Estrada A.E., et al. Habitat degradation impacts primategastrointestinal microbiomes. 2013; 7: 1344-1353
  • [54] Nakamura N., Amato K.R., Garber P.A., Estrada A.E.,Mackie R.I., Gaskins H.R. Analysis of the hydrogenotrophicmicrobiota of wild and captive black howler monkeys(Alouatta pigra) in Palenque National Park, Mexico. Am JPrimatol 2011; 73: 909-919
  • [55] Schwab C., Cristescu B., Boyce M.S., Stenhouse G.B.,Ganzle M. Bacterial populations and metabolites in the fecesof free roaming and captive grizzly bears. Can J Microbiol2009; 55: 1335-1346[PubMed]
  • [56] Zhu L., Wu Q., Dai J., Zhang S., Fuwen W. Evidence ofcellulose metabolism by the giant panda gut microbiome.Proc Natl Acad Sci USA 2011; 108: 17714-17719
  • [57] Uenishi G., Fujita S., Ohashi G., Kato A., Yamauchi S.,Matsuzawa T., et al. Molecular analyses of the intestinalmicrobiota of chimpanzees in the wild and in captivity. Am JPrimatol 2007: 367-376
  • [58] Dhanasiri A.K.S., Brunvold L., Brinchmann M.F., Korsnes K.,Bergh O., Kiron V. Changes in the intestinal microbiota of wildAtlantic cod Gadus morhua L. upon captive rearing. MicrobialEcology 2011; 61: 20-30
  • [59] Donnet-Hughes A., Perez P.F., Dore J., Leclerc M., LevenezF., Benyacoub J., et al. Potential role of the intestinalmicrobiota of the mother in neonatal immune education. ProcNutr Soc 2010; 69: 407-415
  • [60] Mshvildadze M., Neu J., Shuster J., Theriaque D., Li N., Mai V.Intestinal microbial ecology in premature infants assessed usingnon-culture based techniques. J Pediatr 2010; 156: 20-25
  • [61] Jimenez E., Marin M.L., Martin R., Odriozola J.M., OlivaresM., Xaus J., et al. Is meconium from healthy newbornsactually sterile? Res Microbiol 2008; 159: 187-193
  • [62] Hubbell S.P., The Unified Neutral Theory of Biodiversity andBiogeography. Princeton University Press, Princeton, NewJersey, 2001:
  • [63] Freeland W.J. Primate social groups as biological islands.Ecology 1979; 60: 719-728
  • [64] Lankau E.W., Hong P.Y., Mackie R.I. Ecological drift andlocal exposures drive enteric bacterial community differenceswithin species of Galapagos iguanas. Mol Ecol 2012; 21:1779-1788
  • [65] Fallani M., Young D., Scott J., Norin, E., Amarri S., Adam,R., et al. Intestinal microbiota of 6-week-old infants acrossEurope: Geographic influence beyond delivery mode, breastfeedingand antibiotics. J Pediatr Gastr Nutr 2010; 51: 77-84
  • [66] Degnan P.H., Pusey A.E., Lonsdorf E.V., Goodall J.,Wroblewski E.E., Wilson M.L., et al. Factors associated withthe diversification of the gut microbial communities withinchimpanzees from Gombe National Park. Proc Natl Acad SciUSA 2012; 109: 13034-13039
  • [67] Pavelka M.S., Mechanisms of cohesion in black howlermonkeys., In: Susmann RW, Cloninger CR, editors, Originsof altruism and cooperation Springer, New York, 2011 167-178.
  • [68] Chapman C.A., Chapman L.J., Wrangham R.W. Ecologicalconstraints on group size - An analysis of spider monkey andchimpanzee subgroups. Behav Ecol Sociobiol 1995; 36: 59-70
  • [69] Bates L.A., Byrne R.W. Sex differences in the movementpatterns of free-ranging chimpanzees (Pan troglodytesschweinfurthii): Foraging and border checking. Behav EcolSociobiol 2009; 64: 247-255
  • [70] Sommer V., Mendoza-Granados D. Play as an indicator ofhabitat quality: A field study of Langur monkeys (Presbytisentellus). Ethology 1995; 99: 177-192
  • [71] Barrett L., Dunbar R.I.M., Dunbar P. Environmental influenceson play behaviour in immature gelada baboons. Anim Behav1992; 44: 11-115
  • [72] Banks S.C., Piggott M.P., Stow A.J., Taylor A.C. Sex andsociality in a disconnected world: A review of the impactsof habitat fragmentation on animal social interactions. Can JZool 2007; 85: 1065-1079
  • [73] Hart B.L., Hart L.A., Mooring M.S., Olubayo R. Biologicalbasis of grooming behavior in antelope: The body-size,vigilance and habitat principles. Anim Behav 1992; 44: 615-631
  • [74] Hill R.A. Thermal constraints on activity scheduling andhabitat choice in baboons. Am J Phys Anthr 2006; 129: 242-249
  • [75] Bowers M.A., Matter S.F. Landscape ecology of mammals:Relationships between density and patch size. J Mammal1997; 78: 999-1013
  • [76] Cristobal-Azkarate J., Arroyo-Rodriguez V. Diet and activitypattern of howler monkeys (Alouatta palliata) in Los Tuxtlas,Mexico: Effects of habitat fragmentation and implications forconservation. Am J Primatol 2007; 69: 1013-1029
  • [77] Glessner K.D.G., Britt A. Population density and home rangesize of Indri indri in a protected low altitude rain forest. Int JPrimatol 2005; 26: 855-872
  • [78] Chiarello A.G., Melo F.R. Primate population densities andsizes in Atlantic forest remnants of northern Espirito Santo,Brazil. Int J Primatol 2001; 22: 379-396
  • [79] Fahrig L. Effects of habitat fragmentation on biodiversity.Annu Rev Ecol Evol Syst 2003; 34: 487-515
  • [80] Altizer S., Nunn C.L., Thrall P.H., Gittleman J.L., Antonovis J.,Cunningham A.A., et al. Social organization and parasite riskin mammals: integrating theory and empirical studies. AnnuRev Ecol Evol Syst 2003: 517-547
  • [81] Johnson M.B., Lafferty K.D., van Oosterhout C., Cable J.Parasite transmission in social interacting hosts: Monogeneanepidemics in guppies. PLoS One 2011; 6: e22634
  • [82] Ryder J.J., Miller M.R., White A., Knell R.J., Boots M. Hostparasitepopulation dynamics under combined frequencyanddensity-dependent transmission. Oikos 2007; 116:2017-2026
  • [83] Arneberg P., Skorping A., Grenfell B., Read A.F. Host densitiesas determinants of abundance in parasite communities. ProcRoyal Soc B 1998; 265: 1283-1289
  • [84] McNulty N.P., Yatsunenko T., Hsaio A., Faith J.J., MueggeB.D., Goodman A.L., et al. The impact of a consortium offermented milk strains on the gut microbiome of gnotobioticmice and monozygotic twins. Sci Transl Med 2011; 3: 1-14
  • [85] Fons M., Gomez A., Karjalainen T. Mechanisms ofcolonisation resistance of the digestive tract. Part 2: Bacteria/bacteria interactions. Microb Ecol Health Dis 2000; 12: 240-246
  • [86] Servin A.L. Antagonistic activities of lactobacilli andbifidobacteria against microbial pathogens. FEMS MicrobiolRev 2004; 28: 405-440
  • [87] Kennedy M.J., Volz P.A. Ecology of Candida albicans gutcolonization: Inhibition of Candida adhesion, colonization,and dissemination from the gastrointestinal tract by bacterialantagonism. Infect Immun 1985; 49: 654-663
  • [88] Turnbaugh P.J., Gordon H.A. The core gut microbiome,energy balance and obesity. J Physiol 2009; 587: 4153-4158
  • [89] Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L.,Duncan A., Ley R.E., et al. A core gut microbiome in obeseand lean twins. Nature 2009; 457: 480-484
  • [90] Turnbaugh P.J., Ley R.E., Hamady M., Fraser-Liggett C.M.,Knight R., Gordon J.I. The Human Microbiome Project.Nature 2007; 449: 804-810
  • [91] Hamady M., Knight R. Microbial community profilingfor human microbiome projects: Tools, techniques andchallenges. Genome Res 2009; 19: 1141-1152
  • [92] Shade A., Handelsman J. Beyond the Venn diagram: Thehunt for a core microbiome. Environ Microbiol 2011; 14:4-12
  • [93] Degnan B.A., Transport and metabolism of carbohydrates byanaerobic gut bacteria. University of Cambridge, 1992
  • [94] Flint H.J., Bayer E.A., Rincon M.T., Lamed R., White B.A.Polysaccharide utilization by gut bacteria: potential for newinsights from genomic analysis. Nature 2008; 6: 121-131
  • [95] Kohl K.D., Dearing M.D. Experience matters: Prior exposureto plant toxins enhances diversity of gut microbes inherbivores. Ecol Lett 2012; 15: 1008-1015
  • [96] Cha H.R., Chang S.Y., Chang J.H., Kim J.O., Yang J.Y., KimC.H., et al. Downregulation of Th17 cells in the small intestine by disruption of gut flora in the absence of retinoic acid. JImmunol 2010; 184: 6799-6806
  • [97] Broderick N.A., Raffa K.F., Goodman R.M., Handelsman J.Census of the bacterial community of the gypsy moth larvalmidgut by using culturing and culture-independent methods.Appl Environ Microbiol 2004; 70: 293-300
  • [98] Ringo E., Sperstad S., Myklebust R., Refstie S., Krogdahl A.Characterisation of the microbiota associated with intestineof Atlantic cod (Gadus morhua L.): The effect of fish meal,standard soybean meal and a bioprocessed soybean meal.Aquaculture 2006; 261: 829-841
  • [99] Hildebrandt M.A., Hoffman C., Sherrill-Mix S.A., KeilbaughS.A., Hamady M., Chen Y.Y., et al. High-fat diet determinesthe composition of the murine gut microbiome independentlyof obesity. Gastroenterol 2009; 137: 1716-1724
  • [100] Williams C.L., Willard S., Kouba A., Sparks D., Holmes W.,Falcone J., et al. Dietary shifts affect the gastrointestinalmicroflora of the giant panda (Ailuropoda melanoleuca). JAnim Physiol Anim Nutr 2012:
  • [101] Wang Y., Gilbreath T.M., III, Kukutla P., Yan G., Xu J. Dynamicgut microbiome across life history of the malaria mosquitoAnopheles gambiae in Kenya. PLoS One 2011; 6: e24767
  • [102] Cardoso A.M., Cavalcante J.V., Vieira R.P., Lima J.L., GriecoM.A.B., Clementino M.M., et al. Gut bacterial communities inthe giant land snail Achatina fulica and their modification bysugarcane-based diet. PLoS One 2012; 7: e33440
  • [103] Kane M.D., Breznak J.A. Effect of host diet on production oforganic acids and methane by cockroach gut bacteria. ApplEnviron Microbiol 1991; 57: 2628-2634
  • [104] De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M.,Poullet J.B., Massart S., et al. Impact of diet in shaping gutmicrobiota revealed by a comparative study in children fromEurope and rural Africa. Proc Natl Acad Sci USA 2010; 107:14691-14696
  • [105] Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., et al. Human gut microbiomeviewed across age and geography. Nature 2012:
  • [106] Marshall A.J., Boyko C.M., Feilen K.L., Boyko R.H., LeightonM. Defining fallback foods and assessing their importance inprimate ecology and evolution. Am J Phys Anthr 2009; 140:603-614
  • [107] Hoffman R.R. Evolutionary steps of ecophysiologicaladaptation and diversification of ruminants: A comparativeview of their digestive system. Oecologia 1989; 78: 443-457
  • [108] Darwin C., On the Origin of Species by Means of NaturalSelection, or the Preservation of Favoured Races in theStruggle for Life. John Murray, London, 1859
  • [109] Santos J.C., Coloma L.A., Cannatella D.C. Multiple recurringorigins of aposematism and diet specialization in poisonfrogs. Pro Natl Acad Sci USA 2003; 100: 12792-12797
  • [110] Lambert J.E., Primate nutritional ecology: Feeding biologyand diet at ecological and evolutionary scales, In: CampbellC, Fuentes A, MacKinnon KC, Panger M, Bearder SK, (Eds.),Primates in Perspective, Second edition ed Oxford UniversityPress, New York, 2011: 512-522.
  • [111] Leonard W.R., Robertson M.L. Evolutionary perspectives onhuman nutrition: The influence of brain and body-size on dietand metabolism. Am J Hum Biol 1994; 6: 77-88
  • [112] Norconk M.A., Wright B.W., Conklin-Brittain N.L., VinyardC.J., Mechanical and nutritional properties of food as factorsin platyrrhine dietary adaptations, In: Garber PA, Bicca-Marques JC, Estrada AE, Heymann EW, Strier KB. (Eds.),South American Primates, Developments in Primatology:Progress and Prospects Springer, New York, 2009: 279-319.
  • [113] Ragir S. Diet and food preparation: Rethinking early hominidbehavior. Evol Anthr 2000; 9: 153-155
  • [114] Kaplan H., Hill K., Lancaster J., Hurtado A.M. A theory ofhuman life history evolution: Diet, intelligence, and longevity.Evol Anthr 2000; 9: 156-185
  • [115] Cordain L., Eaton S.B., Sebastian A., Mann N., Lindeberg S.,Watkins B.A., et al. Origins and evolution of the Western diet:Health implications for the 21st century. Am J Clin Nutr 2005;81: 341-354
  • [116] Fleagle J.G., Primate Adaptation and Evolution. AcademicPress, San Diego, 2013:
  • [117] Vrieze A., Holleman F., Zoetendal E.G., de Vos W.M.,Hoekstra J.B.L., Nieuwdorp M. The environment within:how gut microbiota may influence metabolism and bodycomposition. Diabetol 2010; 53: 606-613
  • [118] Chivers D.J., Hladik C.M. Morphology of the gastrointestinaltract in primates: Comparisons with other mammals inrelation to diet. J Morphol 1980; 166: 337-386
  • [119] Milton K., The foraging strategy of howler monkeys. ColumbiaUniversity Press, New York, 1980
  • [120] Chapman C.A., Chapman L.J., Rode K.D., Hauck E.M.,McDowell L.R. Variation in the nutritional value of primatefoods: Among trees, time periods, and areas. Int J Primatol2003; 24: 317-333
  • [121] Gates J. Habitat alteration, hunting and the conservation offolivorous primates in African forests. Aust J Ecol 2006; 21:1-9
  • [122] Gonzalez V., Zunino G.E., Kowalewski M.M., BravoS.P. Densidad de monos aulladores (Alouatta caraya) ycomposición y estructura de la selva de inundación en unaisla del Río Paraná medio. Revista Mus Argentino de CienciasNaturales 2002; 4: 7-12
  • [123] Boinski S. Sex-differences in the foraging behavior of squirrelmonkeys in a seasonal habitat. Behav Ecol Sociobiol 1988;23: 177-186
  • [124] van Schaik C.P., Terborgh J.W., Wright S.J. The phenology oftropical forests: Adaptive significance and consequences forprimary consumers. Annu Rev Ecol Syst 1993; 24: 353-377
  • [125] Albon S.D., Langvatn R. Plant phenology and the benefits ofmigration in a temperate ungulate. Oikos 1992; 65: 502-513
  • [126] Cleland E.E., Chuine I., Menzel A., Mooney H.A., SchwartzM.D. Shifting plant phenology in response to global change.Trends Ecol Evol 2007; 22: 357-365
  • [127] Poulin B., Lefebvre G., McNeil R. Tropical avian phenologyin relation to abundance and exploitation of food resources.Ecology 1992; 73: 2295-2309
  • [128] Galetti M. Diet of the scaly-headed parrot (Pionus maximiliani)in a semideciduous forest in southeastern Brazil. Biotropica1993; 25: 419-425
  • [129] Andelt W.F., Kie J.G., Knowlton F.F., Cardwell K. Variationin coyote diets associated with season and successionalchanges in vegetation. J Wildl Manage 1987; 51: 273-277
  • [130] Cantu-Salazar L., Hidalgo-Mihart M.G., Lopez-GonzalezC.A., Gonzalez-Romero A. Diet and food resource use by thepygmy skunk (Spilogale pygmaea) in the tropical dry forest ofChamela, Mexico. J Zool 2005; 267: 283-289
  • [131] Cerling T.E., Viehl K. Seasonal diet changes of the forest hog(Hylochoerus meinertzhageni Thomas) based on the carbonisotopic composition of hair. Afr J Ecol 2004; 42: 88-92
  • [132] Moran N.A., Hansen A.K., Powell J.E., Sabree Z.L. Distinctivegut microbiota of honey bees assessed using deep samplingfrom individual worker bees. PLoS One 2012; 7: e36393
  • [133] King G.M., Judd C., Kuske C.R., Smith C. Analysis ofstomach and gut microbiomes of the eastern oyster(Crassostrea virginica) from coastal Louisiana, USA. PLoSOne 2012; 7: e51475
  • [134] Kobayashi Y., Koike S., Miyaji M., Hata H., Tanaka K. Hingutmicrobes, fermentation and their seasonal variations inHokkaido native horses compared to light horses. EcologicalResearch 2006; 21: 285-291
  • [135] Amato K.R., Black howler monkey (Alouatta pigra) nutrition:Integrating the study of behavior, feeding ecology, and thegut microbial community. University of Illinois, Urbana, 2013
  • [136] Chivers D.J., Hladik C.M., Diet and gut morphology inprimates., Food acquisition and processing in primates,Springer, U.S.A., 1984: 213-230.
  • [137] Hume I.D., Warner A.C.I., Evolution of microbial digestionin mammals., Digestive physiology and metabolism inruminants Springer, Netherlands, 1980 665-684.
  • [138] Hoverstad T., Midtvedt T. Short-chain fatty acids in germ freemice and rats. J Nutr 1986; 116: 1772-1776
  • [139] Wostmann B.S., Larkin C., Moriarty A., Bruckner-Kardoss E.Dietary intake, energy metabolism, and excretory losses ofadult male germfree Wistar rats. Lab Anim Sci 1983; 33: 46-50
  • [140] Backhed F., Ding H., Wang T., Hooper L.V., Koh G.Y., NagyA., et al. The gut microbiota as an environmental factor thatregulates fat storage. Proc Natl Acad Sci USA 2004; 101:15718-15723
  • [141] Crawford P.A., Crowley J.R., Sambandam N., Muegge B.D.,Costello E.K., Hamady M., et al. Regulation of myocardialketone body metabolism by the gut microbiota duringnutrient deprivation. Proc Natl Acad Sci 2009; 106: 11276-11281
  • [142] Flint H.J., Duncan S.H., Scott K.P., Louis P. Interactions adncompetition within the microbial community of the humancolon: Links between diet and health. Environ Microbiol2007; 9: 1101-1111
  • [143] Samuel B.S., Gordon J.I. A humanized gnotobiotic mousemodel of host-Archael-bacterial mutualism. Proc Natl AcadSci USA 2006; 103: 10011-10016
  • [144] Kanamori Y., Sugiyama M., Hashizume K., Yuki N., MorotomiM., Tanaka R. Experience of long-term synbiotic therapyin seven short bowel patients with refractory enterocolitis.Journal of Pediatric Surgery 2004; 39: 1686-1692
  • [145] Pryde S.E., Duncan S.H., Hold G.H., Stewart C.S., Flint H.J.The microbiology of butyrate formation in the human colon.FEMS Microbiol Lett 2002; 217: 133-139
  • [146] Bjorkholm B., Bok C.M., Lundin A., Rafter J., Hibberd M.L.,Pettersson S. Intestinal microbiota regulate xenobioticmetabolism in the liver. PLoS One 2009; 4: e6958
  • [147] Jackson R.L., Greiwe J.S., Schwen R.J. Emerging evidenceof the health benefits of S-equol, an estrogen receptor betaagonist. Nutr Rev 2011; 69: 432-448
  • [148] Santacruz A., Collado M.C., Garcia-Valdes L., Segura M.T.,Martin-Lagos J.A., Anjos T., et al. Gut microbiota compositionis associated with body weight, weight gain and biochemicalparameters in pregnant women. Br J Nutr 2010; 104: 83-92
  • [149] Li M., Wang B., Zhang M., Rantalainen M., Wang S., ZhouH., et al. Symbiotic gut microbes modulate human metabolicphenotypes. Proc Natl Acad Sci USA 2008; 105: 2117-2122
  • [150] Reddy B.S., Pleasants J.R., Wostmann B.S. Effect ofintestinal microflora on iron and zinc metabolism, and onactivities of metalloenzymes in rats. J Nutr 1972; 102: 101-107
  • [151] Milton K., Van Soest P., Robertson J. Digestive efficiencies ofwild howler monkeys. Physiol Zoo 1980; 53: 402-409
  • [152] Rosenfeld J.S. Functional redundancy in ecology andconservation. Oikos 2002; 98: 156
  • [153] Kelly D., Campbell J.I., King T.P., Grant G., Jansson E.A.,Coutts A.G.P., et al. Commensal anaerobic gut bacteriaattenuate inflammation by regulating nuclear-cytoplasmicshutting of PPAR-g and RelA. Nat Immun 2003; 5: 104-112
  • [154] Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y.,Yoshimura K., et al. Bifidobacteria can protect fromenteropathogenic infection through production of acetate.Nature 2011; 469: 543-549
  • [155] Smith K., McCoy K.D., Macpherson A.J. Use of axenicanimals in studying the adaptation of mammals to theircommensal intestinal microbiota. Seminars in immunology2007; 19: 59-69
  • [156] Mulder I.E., Schmidt B., Stokes C.R., Lewis M., Bailey M.,Aminov R.I., et al. Environmentally-acquired bacteria influencemicrobial diversity and natural innate immune responses atgut surfaces. BMC Biol 2009; 7: 79
  • [157] Koch H., Schmid-Hempel P. Socially transmitted gutmicrobiota protect bumble bees against an intestinal parasite.Proc Natl Acad Sci USA 2001; 108: 19288-19292
  • [158] Panigrahi A., Kiron V., Kobayashi T., Puangkaew J., Satoh S.,Sugita H. Immune responses in rainbow trout Oncorhynchusmykiss induced by a potential probiotic bacteria Lactobacillusrhamnosus JCM 1136. Vet Immunol Immunop 2004; 102:379-388
  • [159] Balc’azar J.L., Vendrell D., de Blas I., Ruiz-Zarzuela I.,Giron’es O., Muzquiz J.L. Immune modulation by probioticstrains: Quantification of phagocytosis of Aeromonas salmonicida by leukocytes isolated from gut of rainbow trout(Oncorhynchus mykiss) using a radiolabelling assay. CompImmunol Microbiol 2006; 29: 335-343
  • [160] Balc’azar J.L., de Blas I., Ruiz-Zarzuela I., Vendrell D., CalvoA.C., M’arquez I., et al. Changes in intestinal microbiota andhumoral immune response following probiotic administrationin brown trout (Salmo trutta). . Br J Nutr 2007; 97: 522-527
  • [161] Irianto A., Austin B. Use of probiotics to control furunculosisin rainbow trout Oncorhynchus mykiss (Walbaum). Journal ofFish Disease 2002; 25: 333-342
  • [162] Pirarat N., Kobayashi T., Katagiri T., Maita M., Endo M.Protective effects and mechanisms of a probiotic bacteriumLactobacillus rhamnosus against experimental Edwardsiellatarda infection in tilapia (Oreochromis niloticus). Vet ImmunolImmunop 2006; 113: 339-347
  • [163] Bauer E., Williams B.A., Smidt H., Verstegen M.W.,Mosenthin R. Influence of the gastrointestinal microbiota ondevelopment of the immune system in young animals. CurrIssues Intest Microbiol 2006; 7: 35-51
  • [164] Falk P.G., Hooper L.V., Midtvedt T., Gordon H.A. Creatingand maintaining the gastrointestinal ecosystem: What weknow and need to know from gnotobiology. Microbiol MolBiol Rev 1998; 62: 1157-1170
  • [165] Macpherson A.J., Harris N.L. Interactions betweencommensal intestinal bacteria and the immune system. NatRev Immunol 2004; 4: 478-485
  • [166] Pollard M., Sharon N. Responses of Peyer’s patches in germfreemice to antigenic stimulation. Infect Immun 1970; 2: 96-100
  • [167] Glaister J.R. Factors affecting the lymphoid cells in the smallintestinal epithelium of the mouse. Int Arch Allergy ApplImmunol 1973; 45: 719-730
  • [168] Umesaki Y., Setoyama H., Matsumoto S., Okada Y. Expansionof alpha beta T-cell receptor-bearing intestinal intrepitheliallymphocytes after microbial colonization in germ-free miceand its independence from thymus. Immunology 1993; 79:32-37
  • [169] Imaoka A., Matsumoto S., Setoyama H., Okada Y., UmesakiY. Proliferative recruitment of intestinal intraepitheliallymphocytes after microbial colonization of germ-free mice.Eur J Immunol 1996; 26: 945-948
  • [170] Round J.L., Mazmanian S.K. The gut microbiota shapesintestinal immune responses during health and disease. NatRev Immunol 2009; 9: 313-323
  • [171] Lundin A., Bok C.M., Aronsson L., Bjorkholm B., GustafssonJ.A., Pott S., et al. Gut flora, Toll-like receptors and nuclearreceptors: A tripartite communication that tunes innateimmunity in large intestine. Cell Microbiol 2008; 10: 1093-1103
  • [172] Matsumoto S., Setoyama H., Umesaki Y. Differential inductionof major histocompatability complex molecules on mouseintestine by bacterial colonization. Gastroenterol 1992; 103:1777-1782
  • [173] Umesaki Y., Okada Y., Matsumoto S., Imaoka A., SetoyamaH. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induceMHC class II molecules and fucosyl asialo GM1 glycolipidson the small intestinal epithelial cells in the ex germ-freemouse. Microbiol Immunol 1995; 39: 555-562
  • [174] Rakoff-Nahoum S., Paglino S., Eslami-Varzaneh F., EdbergS., Medzhitoz R. Recognition of commensal microflora byToll-like receptors is required for intestinal homeostasis. Cell2004; 118: 229-241
  • [175] Gaboriau-Routhiau V., Rakotobe S., Lecuyer E., Mulder I.E.,Lan A., Bridonneau C., et al. The key role of segmentedfilamentous bacteria in the coordinated maturation of guthelper T cell responses. Immunity 2009; 31: 677-689
  • [176] Round J.L., Mazmanian S.K. Inducible Fox p3+ regulatoryT-cell development by a commensal bacterium of theintestinal microbiota. Proc Natl Acad Sci USA 2010; 107:12204-12209
  • [177] Neiss J.H., Leithauser F., Adler G., Reimann J. Commensalgut flora drives the expansion of proinflammatory CD4 T cellsin the colonic lamina propria under normal and inflammatoryconditions. J Immunol 2008; 180: 559-568
  • [178] Hall J.A., Bouladoux N., Sun C.M., Wohlfert E.A., BlankR.B., Zhu Q., et al. Commensal DNA limits regulatory T cellconversion and is a natural adjuvant of intestinal immuneresponses. Immunity 2008; 29: 637-649
  • [179] O’Mahony C., Scully P., O’Mahony D., Murphy S., O’BrienF., Lyons A., et al. Commensal-induced regulatory T cellsmediate protection against pathogen-stimulated NF-KBactivation. PLoS Pathogens 2008; 4: e1000112
  • [180] Ivanov I.I., Atarashi K., Manel N., Brodie E.L., ShimaT., Karaoz U., et al. Induction of intestinal Th17 cells bysegmented filamentous bacteria. Cell 2009; 139: 485-498
  • [181] Atarashi K., Nishimura A., Shima T., Umesaki Y., YamamotoM., Onoue M., et al. ATP drives lamina propria T(H)17 celldifferentiation. Nature 2008; 455: 808-812
  • [182] Wen L., Ley R.E., Volchkov P.Y., Stranges P.B., AvanesyanL., Stonebraker A.C., et al. Innate immunity and intestinalmicrobiota in the development of Type 1 diabetes. Nature2008; 455: 1109-1113
  • [183] Macpherson A.J., McCoy K.D., Johansen F.E., BrandtzaegP. The immune geography of IgA induction and function. NatRev 2008; 1: 11-22
  • [184] Benveniste J., Lespinats G., Salomon J.C. Serum andsecretory IgA in axenic and holoxenic mice. J Immunol 1971;108: 1656-1662
  • [185] Benveniste J., Lespinats G., Adam C., Salomon J.C.Immunoglobulins in intact, immunized, and contaminatedaxenic mice: Study of serum IgA. J Immunol 1971; 107:1647-1655
  • [186] Talham G.L., Jiang H.Q., Bos N.A., Cebra J.J. Segmentedfilamentous bacteria are potent stimuli of a physiologicallynormal state of the murine gut mucosal immune system.Infect Immun 1999; 67: 1992-2000
  • [187] Noverr M.C., Huffnagle G.B. Does the microbiota regulateimmune responses outside the gut? Trends Microbiol 2004;12: 562-568
  • [188] Mazmanian S.K., Liu C.H., Tzianabos A.O., Kasper D.L. Animmunomodulatory molecule of symbiotic bacteria directsmaturation of the host immune system. Cell 2005; 122: 107-118
  • [189] Hansen C.H.F., Nielsen D.S., Kverka M., Zakostelska Z.,Klimesova K., Hudcovic T., et al. Patterns of early gutcolonization shape future immune responses of the host.PLoS One 2012; 7: e34043
  • [190] Ichinohe T., Pang I.K., Kumamoto Y., Peaper D.R., Ho J.H.,Murray T.S., et al. Microbiota regulates immune defenseagainst respiratory tract influenza A virus infection. Proc NatlAcad Sci USA 2011; 108: 5354-5359
  • [191] Kim D.H., Austin B. Innate immune responses in rainbow trout(Oncorhynchus mykiss, Walbaum) induced by probiotics.Fish Shellfish Immunol 2006; 21: 513-524
  • [192] Balc’azar J.L., de Blas I., Ruiz-Zarzuela I., Vendrell D.,Giron’es O., Muzquiz J.L. Enhancement of the immuneresponse and protection induced by probiotic lactic acidbacteria against furunculosis in rainbow trout (Oncorhynchusmykiss). FEMS Immunol Med Microbiol 2007; 51: 185-193
  • [193] Nikoskelainen S., Ouwehand A.C., Bylund G., SalminenS., Lilius E.M. Immune enhancement in rainbow trout(Oncorhynchus mykiss) by potential probiotic bacteria(Lactobacillus rhamnosus). Fish Shellfish Immunol 2003; 15:443-452
  • [194] Strachan D.P. Hay fever, hygiene, and household size. BMJ1989; 299: 1259-1260
  • [195] Okada H., Kuhn C., Feillet H., Bach J.-F. The ‘hygienehypothesis’ for autoimmune and allergic diseases: Anupdate. Clin Exp Immunol 2010; 160: 1-9
  • [196] von Mutius E., Vercelli D. Farm living: Effects on childhoodasthma and allergy. Nat Rev Immunol 2010; 10: 861-868
  • [197] Olszak T., An D., Zeissig S., Vera M.P., Richter J.E., FrankeA., et al. Microbial exposure during early life has persistenteffects on natural killer T cell function. Science 2012; 336:489-493
  • [198] Wikoff W.R., Anfora A.T., Liu J., Schultz P.G., Lesley S.A.,Peters E.C., et al. Metabolomics analysis reveals large effectsof gut microflora on mammalian blood metabolites. Proc NatlAcad Sci USA 2009; 106: 3698-3703
  • [199] Devkota S., Wang Y., Musch M.W., Leone V., Fehlner-PeachH., Nadimpalli A., et al. Dietary-fat-induced taurocholic acidpromotes pathobiont expansion and colitis in Il10-/- mice.Nature 2012; 487: 104-108
  • [200] Kassinen A., Krogius-Kurikka L., Makivuokko H., Rinttila T.,Paulin L., Corander J., et al. The fecal microbiota of irritablebowel syndrome patients differs significantly from that ofhealthy subjects. Gastroenterol 2007; 133: 24-33
  • [201] Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Human gutmicrobes associated with obesity. Nature 2006; 444: 1022-1023
  • [202] Hayes K.S., Bancroft M., Goldrick M., I. P., Roberts I.S.,Grencis R.K. Exploitation of the intestinal microflora by theparasitic nematode Trichuris muris. Science 2010; 328:1391-1394
  • [203] Martinez-Mota R., Valdespino C., Sanchez-Ramos M.A.,Serio-Silva J.C. Effects of forest fragmention on thephysiological stress of black howler monkeys. Anim Cons2007; 10: 374-379
  • [204] Trejo-Macias G., Estrada A.E., Mosqueda Cabrera M.A.Survey of helminth parasites in populations of Alouatta palliatamexicana and A. pigra in continuous and in fragmentedhabitat in Southern Mexico. Int J Primatol 2007; 28: 931-945
  • [205] Gillespie T.R., Chapman C.A. Forest fragmentation, thedecline of an endangered primate ,and changes in hostparasiteinteractions relative to an unfragmented forest. Am JPrimatol 2008: 222-230
  • [206] Mulvey M., Aho J.M., Lydeard C., Leberg P.L., Smith M.H.Comparative population genetic structure of a parasite(Fascioloides magna) and its definitive host. Evolution 1991;45: 1628-1640
  • [207] Carey C. Hypothesis concerning the disappearance of borealtoads from the mountains of Colorado. Conserv Biol 1993; 7:355-362
  • [208] Hudson P.J., Dobson A.P., Lafferty K.D. Is a healthyecosystem one that is rich in parasites? Trends Ecol Evol2006; 21: 382-385
  • [209] Heijtz R.D., Wang S., Anuar F., Qian Y., Bjorkholm B.,Samuelsson A., et al. Normal gut microbiota modulates braindevelopment and behavior. Proc Natl Acad Sci USA 2011;108: 3047-3052
  • [210] Neufeld K.M., Kang N., Bienenstock J., Foster J.A. Reducedanxiety-like behavior and central neurochemical change ingerm-free mice. Neurogastroenterology and Motility 2011;23: 255-264
  • [211] Messaoudi M., Lalonde R., Violle N., Javelot H., Desor D.,Nejdi A., et al. Assessment of psychotropic-like properties ofa probiotic fomulation (Lactobacillus helveticus R0052 andBifidobacterium longum R0175) in rats and human subjects.Br J Nutr 2010; 105: 755-764
  • [212] Rao A.V., Bested A.C., Beaulne T.M., Katzman M.A., IorioC., Berardi J.M., et al. A randomized, double-blind, placebocontrolledpilot study of a probiotic in emotional symptoms ofchronic fatigue syndrome. Gut Pathogens 2009; 1: 6
  • [213] Bravo J.A., Forsythe P., Chew M.V., Escaravage E., SavignacH.M., Dinan T.G., et al. Ingestion of Lactobacillus strainregulates emotional behavior and central GABA receptorexpression in a mouse via the vagus nerve. Proc Natl AcadSci USA 2011; 108: 16050-16055
  • [214] Gareau M.G., Jury J., MacQueen G., Sherman P.M.,Perdue M.H. Probiotic treatment of rat pups normalisescorticosterone release and ameliorates colonic dysfunctioninduced by maternal separation. Gut 2007; 56: 1522-1528
  • [215] Desbonnet L., Garrett L., Clarke G., Kiely B., Cryan J.F.,Dinan T. Effects of the probiotic Bifidobacterium infantis inthe maternal separation model of depression. Neuroscience2010; 170: 1179-1188
  • [216] Bercik P., Verdu E.F., Foster J.A., Macri J., Potter M.,Huang X., et al. Chronic gastrointestinal inflammationinduces anxiety-like behavior and alters central nervous sytem biochemistry in mice. Gastroenterol 2010; 139:2102-2112
  • [217] Bercik P., Park A.J., Sinclair D., Khoshdel A., Lu J.,Huang X., et al. The anxiolytic effect of Bifidobacteriumlongum NCC3001 involves vagal pathways for gut-braincommunication. Neurogastroenterology and Motility 2011;23: 1132-1139
  • [218] Foster J.A., McVey Neufeld K.A. Gut-brain axis: How themicrobiome influences anxiety and depression. Cell 2013;36: 305-312
  • [219] Saulnier D.M., Ringel Y., Heyman M.B., Foster J.A., BercikP., Shulman R.J., et al. The intestinal microbiome, probioticsand prebiotics in neurogastroenterology. Landes Bioscience2012; 4: 17-27
  • [220] McVey Neufeld K.A., Mao Y.K., Bienenstock J., FosterJ.A., Kunze W. The microbiome is essential for normal gutintrinsic primary afferent neuron excitability in the mouse.Neurogastroent Motil 2013; 25: 183-188
  • [221] Kunze W., Mao Y.K., Wang B., Huizinga J.D., Ma F., ForsytheP., et al. Lactobacillus reuteri enhances excitability of colonicAH neurons by inhibiting calcium-dependent potassiumchannel opening. J Cell Mol Med 2009; 13: 2261-2270
  • [222] Hanstock T.L., Clayton E.H., Li K.M., Mallet P.E. Anxiety andaggression associated with the fermentation of carbohydratesin the hindguts of rats. Physiol Behav 2004; 82: 357-368
  • [223] Dantzer R., O’Connor J.C., Freund G.G., Johnson R.W.,Kelley K.W. From inflammation to sickness and depression:When the immune system subjugates the brain. Nat RevNeurosci 2008; 9: 46-56
  • [224] Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermudez-Humaran L.G., Gratadoux J.J., et al. Faecalibacteriumprausnitzii is an anti-inflammatory commensal bacteriumidentified by gut microbiota analysis of Crohn diseasepatients. Proc Natl Acad Sci USA 2008; 105: 16731-16736
  • [225] Benton D. The influence of dietary status on the cognitiveperformance of children. Mol Nutr Food Res 2010; 54: 457-470
  • [226] Collado M., Isolauri E., Laitinen K., Salminen S. Distinctcomposition of gut microbiota during pregnancy in overweightand normal-weight women. Am J Clin Nutr 2008; 88: 894-899
  • [227] Gutbrod T., Wolke D., Soehne B., Ohrt B., Riegel K. Effectsof gestation and birth weight on the growth and developmentof very low birthweight small for gestational age infants: Amatched group comparison. Arch Dis Child Fetal NeonatalEd 2000; 82: F208-F214
  • [228] Girard S.A., Bah T.M., Kaloustian S., Lada-Moldovan L.,Rondeau I., Tompkins T.A., et al. Lactobacillus helveticus andBifidobacterium longum taken in combination reduce theapoptosis propensity in the limbic system after myocardialinfarction in a rat model. Br J Nutr 2009; 102: 1420-1425
  • [229] Behie A.M., Pavelka M.S. The short-term effects of ahurricane on the diet and activity of black howlers (Alouattapigra) in Monkey River, Belize. Folia Primatologia 2005; 76:1-9
  • [230] Chaves O.M., Stoner K.E., Arroyo-Rodriguez V. Seasonaldifferences in activity patterns of Geoffroyi’s spider monkeys(Ateles geoffroyi) living in continuous and fragmented forestsin southern Mexico. Int J Primatol 2011; 32: 960-973
  • [231] Overdorff D.J., Strait S.G., Telo A. Seasonal variation in activityand diet in a small-bodied folivorous primate, Hapalemurgriseus, in southeastern Madagascar. Am J Primatol 1997;43: 211-223
  • [232] Ables E.D. Activity studies of red foxes in southern Wisconsin.J Wildl Manage 1969: 145-153
  • [233] Relyea R.A. Activity of desert mule deer during the breedingseason. J Mammal 1994: 940-949
  • [234] Martin J., Lopez P. Social status of male Iberian rock lizards(Lacerta monticola) influences their activity patterns duringthe mating season. Can J Zool 2000; 78: 1105-1109
  • [235] Baker-Henningham H., Hamadani J.D., Huda S.N.,Grantham-McGregor S.M. Undernourished children havedifferent temperaments than better-nourished children inrural Bangladesh. J Nutr 2009; 139: 1765-1771
  • [236] Janson C.H. Testing the predation hypothesis for vertebratesociality: Prospects and pitfalls. Behaviour 1998; 135: 389-410
  • [237] Hill R.A., Dunbar R.I.M. An evaluation of the roles of predationrate and predation risk as selective pressures on primategrouping behavior. Behaviour 1998; 135: 411-430
  • [238] Alexander R.D. The evolution of social behavior. Ann RevEcol Syst 1974; 5: 325-383
  • [239] Wilson E.O., Sociobiology. Harvard University Press,Cambridge, 1980
  • [240] Clark C., Mangel M. The evolutionary advantages of groupforaging. Theor Pop Biol 1986; 30: 45-75
  • [241] Bergmuller R., Animal personality and behaviouralsyndromes., Animal Behaviour: Evolution and MechanismsSpringer, Berlin, 2010 587-621.
  • [242] Sih A., Bell A.M., Johnson J.C. Behavioral syndromes: Anecological and evolutionary overview. Trends Ecol Evol 2004;19: 372-378
  • [243] Clark A., Ehlinger T.J. Pattern and adaptation in individualbehavioral differences. Perspectives in Ethology 1987; 7:1-47
  • [244] Sih A., Bell A.M., Insights for behavioral ecology frombehavioral syndromes., Advances in the Study ofBehavior2008 227-281.
  • [245] Frost A.J., Winrow-Giffen A., Ashley P.J., Sneddon L.U.Plasticity in animal personality traits: Does prior experiencealter the degree of boldness? Proc Royal Soc B 2007; 274:333-339
  • [246] Bell A.M., Sih A. Exposure to predation generates personalityin threespined sticklebacks (Gasterosteus aculeatus). EcolLett 2007; 10: 828-834
  • [247] Bergmuller R., Taborsky M. Animal personality due to socialniche specialisation. Trends Ecol Evol 2010; 25: 504-511
  • [248] Careau V., Thomas D., Humphries M.M., Reale D. Energymetabolism and animal personality. Oikos 2008; 117: 642-653
  • [249] Biro P.A., Stamps J.A. Are animal personality traits linked tolife-history productivity? Trends Ecol Evol 2008; 23: 361-368
  • [250] Stamps J.A. Growth-mortality tradeoffs and ‘personalitytraits’ in animals. Ecol Lett 2007; 10: 355-363
  • [251] Dingemanse N.J., Both C., Drent P.J., Tinbergen J.M.Fitness consequences of avian personalities in a fluctuatingenvironment. Proc Royal Soc B 2004; 271: 847-852
  • [252] Wilson A.D.M., Godin J.-G.J., Ward J.W. Boldness andreproductive fitness correlates in the Eastern mosquitofish,Gambusia holbrooki. Ethology 2009; 116: 96-104
  • [253] Bailey M., Coe C.L. Maternal separation disrupts the integrityof the intestingal micoflora in infant rhesus monkeys. DevPsychobiol 1999; 35: 146-155
  • [254] Suzuki K., Harasawa R., Yoshitake Y., Mitsuoka T. Effect ofcrowding and heat stress on intestinal flora, body weightgain, and feed efficiency of growing rats and chicks. NipponJuigaku Zasshi 1983; 45: 331-338
  • [255] Xu J., Mahowald M.A., Ley R.E., Lozupone C., Hamady M.,Martens E.C., et al. Evolution of symbiotic bacteria in thedistal human intestine. PLoS Biol 2007; 5: e156
  • [256] Mackie R.I. Mutualistic fermentative digestion in thegastrointestinal tract: Diversity and evolution. Integr CompBiol 2002; 42: 319-326
  • [257] Benezra A., DeStefano J., Gordon J.I. Anthropology ofmicrobes. Proc Natl Acad Sci USA 2012; 109: 6378-6381
  • [258] Ochman H., Worobey M., Kuo C.H., Ndjango J.B.N., PeetersM., Hahn B.H., et al. Evolutionary relationships of wildhominids recapitulated by gut microbial communities. PLoSBiol 2010; 8: e1000546
  • [259] Yildirim S., Yeoman C.J., Sipos M., Torralba M., Wilson B.A.,Goldberg T.L., et al. Characterization of the fecal microbiomefrom non-human wild primates reveals species specificmicrobial communities. PLoS One 2010; 5: e13963
  • [260] Xu J., Gordon J.I. Honor thy symbionts. PNAS 2003; 100:10452-10459
  • [261] Zaneveld J., Turnbaugh P.J., Lozupone C., Ley R.E., HamadyM., Gordon J.I., et al. Host-bacterial coevolution and thesearch for new drug targets. Curr Opin Chem Biol 2008; 12:109-114
  • [262] Strier K.B., Boubli J.P. A history of long-term research andconservation of northern muriquis (Brachyteles hypoxanthus)at the Estacao Biologica de Caratinga/RPPN-FMA. PrimateConservation 2006; 20: 53-63
  • [263] Alberts S.C., Watts H.E., Altmann J. Queuing and queuejumping:Long-term patterns of reproductive skew in malesavannah baboons, Papio cynocephalus. Anim Behav 2003;65: 821-840
  • [264] Pusey A.E., Pintea L., Wilson M.L., Shadrack K., Goodall J.The contribution of long-term research at Gombe NationalPark to chimpanzee conservation. Conserv Biol 2007; 21:623-634
  • [265] Koenig A., Borries C., Social organization and male residencepattern in Phayre’s leaf monkeys., In: Kappeler PM, Watts DP,(Eds.), Long-term Field Studies of Primates, Springer, BerlinHeidelberg, Heidelberg, 2012: 215-236.
  • [266] Skelly D.K., Werner E.E., Cortwright S.A. Long-termdistributional dynamics of a Michigan amphibianassemblage. Ecology 1999; 80: 2326-2337
  • [267] Holmes R.T., Sherry T.W., Sturges S.W. Bird communitydynamics in a temperate deciduous forest: Long-termtrends at Hubbard Brook. Ecol Monogr 1986; 56: 201-220
  • [268] Durant S.M., Bashir S., Maddox T., Laurenson K. Relatinglong-term studies to conservation practice: The case ofthe Serengeti Cheetah Project. Conserv Biol 2007; 21:602-611
  • [269] Clutton-Brock T., Sheldon B.C. Individuals and populations:The role of long-term, individual-based studies of animalsin ecology and evolutionary biology. Trends Ecol Evol2010; 25: 562-573
  • [270] Petit S., Waudby H.P., Walker A.T., Zanker R., Rau G. Anon-mutilating method for marking small wild mammalsand reptiles. Aust J Zool 2012; 60: 64-71
  • [271] Pagano A.M., Peacock E., McKinney M.A. Remote biopsydarting and marking of polar bears. Mar Mammal Sci2013; doi: 10.1111/mms.12029[Crossref]
  • [272] Sikes R.S., Gannon W.L. Guidelines of the AmericanSociety of Mammologists for the use of wild mammals inresearch. J Mammal 2011; 92: 235-253
  • [273] Knights D., Kuczynski J., Charlson E.S., Zaneveld J.,Mozer M.C., Collman R.G., et al. Bayesian communitywideculture-independent microbial source tracking. NatMethods 2011; 8: 761-763
  • [274] Wu G.D., Lewis J.D., Hoffman C., Chen Y.Y., Knight R.,Bittinger K., et al. Sampling and pyrosequencing methodsfor characterizing bacterial communities in the human gutusing 16S sequence tags. BMC Microbiol 2010; 10: 206
  • [275] Vlckova K., Mrazek J., Kopecny J., Petrzelkova K.J.Evaluation of different storage methods to characterizethe fecal bacterial communities of captive western lowlandgorillas (Gorilla gorilla gorilla). J Microbiol Methods 2012;91: 45-51
  • [276] Pakpour S., Milani A.S., Chenier M.R. A multi-criteriadecision-making approach for comparing samplepreservation and DNA extraction methods from swinefeces. Am J Mol Biol 2012; 2: 159-169
  • [277] Rossmanith P., Roder B., Fruhwirth K., Vogl C. Mechanismsof degradation of DNA standards for calibration functionduring storage. Appl Microbiol Biotechnol 2011; 89: 407-417
  • [278] Gray M.A., Pratte Z.A., Kellogg C.A. Comparison ofDNA preservation methods for environmental bacterialcommunity samples. FEMS Microb Ecol 2012; 83: 468-477
  • [279] Deevong P., Hongoh Y., Inoue T., Trakulnaleamsai S., KudoT., Noparatnaraporn N., et al. Effect of temporal samplepreservation on the molecular study of a complex microbialcommunity in the gut of the termite Microcerotermes sp.Microbes Environ 2006; 21: 78-85
  • [280] Simister R.L., Schmitt S., Taylor M.W. Evaluating methodsfor the preservation and extraction of DNA and RNA for analysis of microbial communities in marine sponges. JExp Mar Biol Ecol 2011; 397: 38-43
  • [281] Nechvatal J.M., Ram J.L., Basson M.D., Namprachan P.,Niec S.R., Badsha K.Z., et al. Fecal collection, ambientpreservation, and DNA extraction for PCR amplification ofbacterial and human markers from human feces. J MicrobiolMethods 2008; 72: 124-132
  • [282] Moreau C.S., Wray B.D., Czekanski-Moir J.E., Rubin B.E.R.DNA preservation: A test of commonly used preservatives forinsects. Invertebr Syst 2013; 27: 81-86
  • [283] Koren O., Goodrich J.K., Cullender T.C., Spor A., Laitinen K.,Backhed H.K., et al. Host remodeling of the gut microbiomeand metabolic changes during pregnancy. Cell 2012; 150:470-480
  • [284] Kitaysky A.S., Wingfield J.C., Piatt J.F. Dynamics of foodavailability, body condition and physiological stress responsein breeding Black-legged Kittiwakes. Funct Ecol 2002; 13:577-584
  • [285] Chapman C.A., Saj T.L., Snaith T.V. Temporal dynamicsof nutrition, parasitism, and stress in colobus monkeys:implications for population regulation and conservation. AmJ Physiol Anthr 2007: 240-250
  • [286] Kotrschal K., Hirschenhauser K., Mostl E. The relationshipbetween social stress and dominance is sesaonal in greylaggeese. Animal Behaviour 1998; 55: 171-176
  • [287] Romero L.M. Seasonal changes in plasma glucocorticoidconcentrations in free-living vertebrates. Gen CompEndocrinol 2002; 128: 1-24
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_micsm-2013-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.