Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 | 1 |
Tytuł artykułu

MicroRNAs are central to osteogenesis: a review with a focus on cardiovascular calcification

Treść / Zawartość
Warianty tytułu
Języki publikacji
Cardiovascular calcification, manifested by coronary artery calcification and aortic valve stenosis, is a widespread condition that is becoming more common with the aging of the general population. No disease-modifying therapies currently exist for any forms of cardiovascular calcification. A number of similarities exist between pathological calcification in cardiovascular tissue and physiological calcification in bone, termed osteogenesis. MicroRNAs are small noncoding RNAs that have been shown to have multiple effects throughout the cardiovascular system. In this review, we discuss the pre-clinical evidence supporting a role for microRNAs in osteogenesis, with a focus on cardiovascular calcification. The microRNAs with most evidence implicating them in the disease process are the miR-17~92 cluster, miR-23a/27a/24-2 family, miR-26a, miR-29b, the miR-30 family, miR-31, miR-125b, miR-133a, miR-143/145, miR-155, and miR-221/222. We also highlight the limitations of current evidence in this field, such as the lack of studies using high-throughput technologies.

Opis fizyczny
  • OxVALVE Study, Room B15, Level
    0, Cardiac Investigations Annexe, John Radcliffe Hospital, Headley Way,
    Oxford OX3 9DU, United Kingdom
  • Department of Medicine, University of Otago, Dunedin,
    New Zealand, and Research Fellow, Department of Cardiology,
    Oxford University Hospitals, Oxford, United Kingdom
  • Department of Surgery, University of Otago,
    Dunedin, New Zealand
  • [1] E.M. Small, E.N. Olson. Pervasive roles of microRNAs in cardiovascularbiology. Nature. 2011; 469: 336–42.
  • [2] S. Coffey, B. Cox, M.J.A. Williams. Lack of progress in valvularheart disease in the pre-transcatheter aortic valve replacementera: increasing deaths and minimal change in mortality rateover the past three decades. Am. Heart J. 2014; 167: 562–567.e2.
  • [3] M.Y. Henein, A. Owen. Statins moderate coronary stenoses butnot coronary calcification: results from meta-analyses. Int. J.Cardiol. 2011; 153: 31–5.
  • [4] A.B. Rossebø, T.R. Pedersen, K. Boman, P. Brudi, J.B.Chambers, K. Egstrup, et al. Intensive lipid lowering withsimvastatin and ezetimibe in aortic stenosis. N. Engl. J. Med.2008; 359: 1343–56.
  • [5] E.R. Mohler, F. Gannon, C. Reynolds, R. Zimmerman, M.G.Keane, F.S. Kaplan. Bone formation and inflammation incardiac valves. Circulation. 2001; 103: 1522–1528.
  • [6] J. Bauersachs, T. Thum. Biogenesis and Regulation of CardiovascularMicroRNAs. Circ. Res. 2011; 109: 334–47.[Crossref]
  • [7] Y. Lee, M. Kim, J. Han, K.-H. Yeom, S. Lee, S.H. Baek, et al.MicroRNA genes are transcribed by RNA polymerase II. EMBO J.2004; 23: 4051–60.[Crossref]
  • [8] A.M. Denli, B.B.J. Tops, R.H.A. Plasterk, R.F. Ketting,G.J. Hannon. Processing of primary microRNAs by theMicroprocessor complex. Nature. 2004; 432: 231–5.
  • [9] R.I. Gregory, K.-P. Yan, G. Amuthan, T. Chendrimada, B.Doratotaj, N. Cooch, et al. The Microprocessor complexmediates the genesis of microRNAs. Nature. 2004; 432:235–40.
  • [10] R. Yi, Y. Qin, I.G. Macara, B.R. Cullen. Exportin-5 mediates thenuclear export of pre-microRNAs and short hairpin RNAs. GenesDev. 2003; 17: 3011–6.[Crossref]
  • [11] B.S. Cobb, T.B. Nesterova, E. Thompson, A. Hertweck, E.O’Connor, J. Godwin, et al. T cell lineage choice and differentiationin the absence of the RNase III enzyme Dicer. J. Exp.Med. 2005; 201: 1367–73.
  • [12] R.C. Friedman, K.K.-H. Farh, C.B. Burge, D.P. Bartel. Mostmammalian mRNAs are conserved targets of microRNAs.Genome Res. 2009; 19: 92–105.
  • [13] A. Helwak, G. Kudla, T. Dudnakova, D. Tollervey. Mappingthe human miRNA interactome by CLASH reveals frequentnoncanonical binding. Cell. 2013; 153: 654–65.
  • [14] E. van Rooij, A.L. Purcell, A.A. Levin. Developing MicroRNATherapeutics. Circ. Res. 2012; 110: 496–507.[Crossref]
  • [15] R.E. Lanford, E.S. Hildebrandt-Eriksen, A. Petri, R. Persson,M. Lindow, M.E. Munk, et al. Therapeutic silencing ofmicroRNA-122 in primates with chronic hepatitis C virusinfection. Science. 2010; 327: 198–201.
  • [16] H.L.A. Janssen, H.W. Reesink, E.J. Lawitz, S. Zeuzem, M.Rodriguez-Torres, K. Patel, et al. Treatment of HCV infection bytargeting microRNA. N. Engl. J. Med. 2013; 368: 1685–94.
  • [17] C. Goettsch, J.D. Hutcheson, E. Aikawa. MicroRNA in CardiovascularCalcification: Focus on Targets and ExtracellularVesicle Delivery Mechanisms. Circ. Res. 2013; 112: 1073–1084.[Crossref]
  • [18] M. Scheideler, C. Elabd, L.-E. Zaragosi, C. Chiellini, H. Hackl,F. Sanchez-Cabo, et al. Comparative transcriptomics of humanmultipotent stem cells during adipogenesis and osteoblastogenesis.BMC Genomics. 2008; 9: 340.[Crossref]
  • [19] T. Gaur, S. Hussain, R. Mudhasani, I. Parulkar, J.L. Colby, D.Frederick, et al. Dicer inactivation in osteoprogenitor cellscompromises fetal survival and bone formation, while excisionin differentiated osteoblasts increases bone mass in the adultmouse. Dev. Biol. 2010; 340: 10–21.
  • [20] Y. Zhang, R.-L. Xie, C.M. Croce, J.L. Stein, J.B. Lian, A.J. vanWijnen, et al. A program of microRNAs controls osteogeniclineage progression by targeting transcription factor Runx2.Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 9863–8.[Crossref]
  • [21] Y. Zhang, R.-L. Xie, J. Gordon, K. LeBlanc, J.L. Stein, J.B. Lian, etal. Control of mesenchymal lineage progression by microRNAstargeting skeletal gene regulators Trps1 and Runx2. J. Biol.Chem. 2012; 287: 21926–35.
  • [22] M.Q. Hassan, J. a R. Gordon, M.M. Beloti, C.M. Croce, A.J. vanWijnen, J.L. Stein, et al. A network connecting Runx2, SATB2,and the miR-23a~27a~24-2 cluster regulates the osteoblastdifferentiation program. Proc. Natl. Acad. Sci. U. S. A. 2010;107: 19879–84.[Crossref]
  • [23] J. Dong, X. Cui, Z. Jiang, J. Sun. MicroRNA-23a modulates tumornecrosis factor-alpha-induced osteoblasts apoptosis by directlytargeting Fas. J. Cell. Biochem. 2013; 114: 2738–45.
  • [24] X.-B. Liao, Z.-Y. Zhang, K. Yuan, Y. Liu, X. Feng, R.-R. Cui, et al.MiR-133a modulates osteogenic differentiation of vascularsmooth muscle cells. Endocrinology. 2013; 154: 3344–52.
  • [25] V. Pérez-Andreu, R. Teruel, J. Corral, V. Roldán, N. García-Barberá, S. Salloum-Asfar, et al. miR-133a regulates vitaminK 2,3-epoxide reductase complex subunit 1 (VKORC1), a keyprotein in the vitamin K cycle. Mol. Med. 2012; 18: 1466–72.
  • [26] Z. Li, M.Q. Hassan, S. Volinia, A.J. van Wijnen, J.L. Stein,C.M. Croce, et al. A microRNA signature for a BMP2-inducedosteoblast lineage commitment program. Proc. Natl. Acad. Sci.U. S. A. 2008; 105: 13906–11.[Crossref]
  • [27] J. Huang, L. Zhao, L. Xing, D. Chen. MicroRNA-204 regulatesRunx2 protein expression and mesenchymal progenitor celldifferentiation. Stem Cells. 2010; 28: 357–64.
  • [28] R.-R. Cui, S.-J. Li, L.-J. Liu, L. Yi, Q.-H. Liang, X. Zhu, et al.MicroRNA-204 regulates vascular smooth muscle cellcalcification in vitro and in vivo. Cardiovasc. Res. 2012; 96:320–9.
  • [29] E.-J. Kim, I.-H. Kang, J.W. Lee, W.-G. Jang, J.-T. Koh. MiR-433mediates ERRγ-suppressed osteoblast differentiation via directtargeting to Runx2 mRNA in C3H10T1/2 cells. Life Sci. 2013; 92:562–8.
  • [30] M. Tomé, P. López-Romero, C. Albo, J.C. Sepúlveda, B.Fernández-Gutiérrez, a Dopazo, et al. miR-335 orchestratescell proliferation, migration and differentiation in humanmesenchymal stem cells. Cell Death Differ. 2011; 18: 985–95.
  • [31] J. Zhang, Q. Tu, L.F. Bonewald, X. He, G. Stein, J. Lian, et al.Effects of miR-335-5p in modulating osteogenic differentiationby specifically downregulating Wnt antagonist DKK1. J. BoneMiner. Res. 2011; 26: 1953–63.
  • [32] R. Bhushan, J. Grünhagen, J. Becker, P.N. Robinson, C.-E. Ott, P.Knaus. miR-181a promotes osteoblastic differentiation throughrepression of TGF-β signaling molecules. Int. J. Biochem. CellBiol. 2013; 45: 696–705.
  • [33] Y. Mizuno, Y. Tokuzawa, Y. Ninomiya, K. Yagi, Y. Yatsuka-Kanesaki, T. Suda, et al. miR-210 promotes osteoblasticdifferentiation through inhibition of AcvR1b. FEBS Lett. 2009;583: 2263–8.
  • [34] T. Itoh, M. Ando, Y. Tsukamasa, Y. Akao. Expression of BMP-2and Ets1 in BMP-2-stimulated mouse pre-osteoblast differentiationis regulated by microRNA-370. FEBS Lett. 2012; 586:1693–701.
  • [35] T. Itoh, S. Takeda, Y. Akao. MicroRNA-208 modulatesBMP-2-stimulated mouse preosteoblast differentiation bydirectly targeting V-ets erythroblastosis virus E26 oncogenehomolog 1. J. Biol. Chem. 2010; 285: 27745–52.
  • [36] Y. Zeng, X. Qu, H. Li, S. Huang, S. Wang, Q. Xu, et al.MicroRNA-100 regulates osteogenic differentiation of humanadipose-derived mesenchymal stem cells by targeting BMPR2.FEBS Lett. 2012; 586: 2375–81.
  • [37] Y. Du, C. Gao, Z. Liu, L. Wang, B. Liu, F. He, et al. Upregulationof a disintegrin and metalloproteinase with thrombospondinmotifs-7 by miR-29 repression mediates vascular smoothmuscle calcification. Arterioscler. Thromb. Vasc. Biol. 2012; 32:2580–8.[Crossref]
  • [38] T. Itoh, Y. Nozawa, Y. Akao. MicroRNA-141 and -200a areinvolved in bone morphogenetic protein-2-induced mousepre-osteoblast differentiation by targeting distal-lesshomeobox 5. J. Biol. Chem. 2009; 284: 19272–9.
  • [39] B. Yanagawa, F. Lovren, Y. Pan, V. Garg, A. Quan, G. Tang, et al.miRNA-141 is a novel regulator of BMP-2-mediated calcificationin aortic stenosis. J. Thorac. Cardiovasc. Surg. 2012; 144:256–62.
  • [40] J. Gao, T. Yang, J. Han, K. Yan, X. Qiu, Y. Zhou, et al. MicroRNAexpression during osteogenic differentiation of humanmultipotent mesenchymal stromal cells from bone marrow. J.Cell. Biochem. 2011; 112: 1844–56.[Crossref]
  • [41] S.R. Baglìo, V. Devescovi, D. Granchi, N. Baldini. MicroRNAexpression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterixregulation by miR-31. Gene. 2013; 527: 321–31.
  • [42] J. Zhang, W. Fu, M. He, H. Wang, W. Wang, S. Yu, et al. MiR-637maintains the balance between adipocytes and osteoblasts bydirectly targeting Osterix. Mol. Biol. Cell. 2011; 22: 3955–61.
  • [43] K. Shi, J. Lu, Y. Zhao, L. Wang, J. Li, B. Qi, et al. MicroRNA-214suppresses osteogenic differentiation of C2C12 myoblast cellsby targeting Osterix. Bone. 2013; 55: 487–94.
  • [44] L. Yang, P. Cheng, C. Chen, H.-B. He, G.-Q. Xie, H.-D. Zhou, et al.miR-93/Sp7 function loop mediates osteoblast mineralization.J. Bone Miner. Res. 2012; 27: 1598–606.[Crossref]
  • [45] T.S. Lisse, R.F. Chun, S. Rieger, J.S. Adams, M. Hewison.Vitamin D activation of functionally distinct regulatory miRNAsin primary human osteoblasts. J. Bone Miner. Res. 2013; 28:1478–88.[Crossref]
  • [46] L. Fang, S. Kahai, W. Yang, C. He, A. Seth, C. Peng, et al.Transforming growth factor-beta inhibits nephronectin-inducedosteoblast differentiation. FEBS Lett. 2010; 584: 2877–82.
  • [47] M. Tsukasaki, A. Yamada, K. Yoshimura, A. Miyazono, M.Yamamoto, M. Takami, et al. Nephronectin expression isregulated by SMAD signaling in osteoblast-like MC3T3-E1 cells.Biochem. Biophys. Res. Commun. 2012; 425: 390–2.
  • [48] S. Kahai, S.-C. Lee, D.Y. Lee, J. Yang, M. Li, C.-H. Wang, etal. MicroRNA miR-378 regulates nephronectin expressionmodulating osteoblast differentiation by targeting GalNT-7.PLoS One. 2009; 4: e7535.
  • [49] T. Gui, G. Zhou, Y. Sun, A. Shimokado, S. Itoh, K. Oikawa, etal. MicroRNAs that target Ca(2+) transporters are involved invascular smooth muscle cell calcification. Lab. Invest. 2012;92: 1250–9.[Crossref]
  • [50] H. Li, H. Xie, W. Liu, R. Hu, B. Huang, Y. Tan, et al. A novelmicroRNA targeting HDAC5 regulates osteoblast differentiationin mice and contributes to primary osteoporosis in humans. J.Clin. Invest. 2009; 119: 3666–77.[Crossref]
  • [51] R. Hu, W. Liu, H. Li, L. Yang, C. Chen, Z.-Y. Xia, et al. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouseosteoblast differentiation. J. Biol. Chem. 2011; 286: 12328–39.
  • [52] S. Huang, S. Wang, C. Bian, Z. Yang, H. Zhou, Y. Zeng, et al.Upregulation of miR-22 promotes osteogenic differentiationand inhibits adipogenic differentiation of human adiposetissue-derived mesenchymal stem cells by repressing HDAC6protein expression. Stem Cells Dev. 2012; 21: 2531–40.[Crossref]
  • [53] M. Zhou, J. Ma, S. Chen, X. Chen, X. Yu. MicroRNA-17-92cluster regulates osteoblast proliferation and differentiation.Endocrine. 2014; 45: 302–10.[Crossref]
  • [54] H. Li, T. Li, S. Wang, J. Wei, J. Fan, J. Li, et al. miR-17-5p andmiR-106a are involved in the balance between osteogenic andadipogenic differentiation of adipose-derived mesenchymalstem cells. Stem Cell Res. 2013; 10: 313–24.[Crossref]
  • [55] J. Zhang, W. Fu, M. He, W. Xie, Q. Lv, G. Wan, et al. MiRNA-20apromotes osteogenic differentiation of human mesenchymalstem cells by co-regulating BMP signaling. RNA Biol. 2011; 8:829–38.[Crossref]
  • [56] D.M. Tiago, C.L. Marques, V.P. Roberto, M.L. Cancela, V. Laizé.Mir-20a regulates in vitro mineralization and BMP signalingpathway by targeting BMP-2 transcript in fish. Arch. Biochem.Biophys. 2014; 543: 23–30.
  • [57] E. Luzi, F. Marini, S.C. Sala, I. Tognarini, G. Galli, M.L. Brandi.Osteogenic differentiation of human adipose tissue-derivedstem cells is modulated by the miR-26a targeting of the SMAD1transcription factor. J. Bone Miner. Res. 2008; 23: 287–95.
  • [58] E. Luzi, F. Marini, I. Tognarini, G. Galli, A. Falchetti, M.L. Brandi.The regulatory network menin-microRNA 26a as a possibletarget for RNA-based therapy of bone diseases. Nucleic AcidTher. 2012; 22: 103–8.
  • [59] V. Nigam, H.H. Sievers, B.C. Jensen, H.A. Sier, P.C. Simpson, D.Srivastava, et al. Altered microRNAs in bicuspid aortic valve: acomparison between stenotic and insufficient valves. J. HeartValve Dis. 2010; 19: 459–65.
  • [60] Z. Li, M.Q. Hassan, M. Jafferji, R.I. Aqeilan, R. Garzon, C.M.Croce, et al. Biological functions of miR-29b contribute topositive regulation of osteoblast differentiation. J. Biol. Chem.2009; 284: 15676–84.
  • [61] K. Kapinas, C.B. Kessler, A.M. Delany. miR-29 suppression ofosteonectin in osteoblasts: regulation during differentiationand by canonical Wnt signaling. J. Cell. Biochem. 2009; 108:216–24.[Crossref]
  • [62] K. Kapinas, C. Kessler, T. Ricks, G. Gronowicz, A.M. Delany.miR-29 modulates Wnt signaling in human osteoblasts througha positive feedback loop. J. Biol. Chem. 2010; 285: 25221–31.
  • [63] M.D. Paraskevopoulou, G. Georgakilas, N. Kostoulas, I.S.Vlachos, T. Vergoulis, M. Reczko, et al. DIANA-microT webserver v5.0: service integration into miRNA functional analysisworkflows. Nucleic Acids Res. 2013; 41: W169–73.
  • [64] T. Eguchi, K. Watanabe, E.S. Hara, M. Ono, T. Kuboki, S.K.Calderwood. OstemiR: a novel panel of microRNA biomarkersin osteoblastic and osteocytic differentiation from mesencymalstem cells. PLoS One. 2013; 8: e58796.
  • [65] M. Zhang, X. Liu, X. Zhang, Z. Song, L. Han, Y. He, et al.MicroRNA-30b is a multifunctional regulator of aortic valveinterstitial cells. J. Thorac. Cardiovasc. Surg. 2013; 1–8.
  • [66] J. Wang, X. Guan, F. Guo, J. Zhou, a Chang, B. Sun, et al.miR-30e reciprocally regulates the differentiation of adipocytesand osteoblasts by directly targeting low-density lipoproteinreceptor-related protein 6. Cell Death Dis. 2013; 4: e845.
  • [67] J.A.F. Balderman, H.-Y. Lee, C.E. Mahoney, D.E. Handy, K. White,S. Annis, et al. Bone Morphogenetic Protein-2 DecreasesMicroRNA-30b and MicroRNA-30c to Promote Vascular SmoothMuscle Cell Calcification. J. Am. Heart Assoc. 2012; 1: e003905.[Crossref]
  • [68] C. Goettsch, M. Rauner, N. Pacyna, U. Hempel, S.R. Bornstein,L.C. Hofbauer. miR-125b regulates calcification of vascularsmooth muscle cells. Am. J. Pathol. 2011; 179: 1594–600.
  • [69] P. Wen, H. Cao, L. Fang, H. Ye, Y. Zhou, L. Jiang, et al. miR-125b/Ets1 axis regulates transdifferentiation and calcificationof vascular smooth muscle cells in a high-phosphateenvironment. Exp. Cell Res. 2014; 322: 302–12.
  • [70] Y. Mizuno, K. Yagi, Y. Tokuzawa, Y. Kanesaki-Yatsuka, T. Suda, T.Katagiri, et al. miR-125b inhibits osteoblastic differentiation bydown-regulation of cell proliferation. Biochem. Biophys. Res.Commun. 2008; 368: 267–72.
  • [71] A.Y. Rangrez, E. M’Baya-Moutoula, V. Metzinger-Le Meuth,L. Hénaut, M.S.E.I. Djelouat, J. Benchitrit, et al. Inorganicphosphate accelerates the migration of vascular smoothmuscle cells: evidence for the involvement of miR-223. PLoSOne. 2012; 7: e47807.
  • [72] F. Taïbi, V. Metzinger-Le Meuth, E. M’Baya-Moutoula,M.S.E.I. Djelouat, L. Louvet, J.-M. Bugnicourt, et al. Possibleinvolvement of microRNAs in vascular damage in experimental chronic kidney disease. Biochim. Biophys. Acta - Mol. BasisDis. 2014; 1842: 88–98.
  • [73] J. Jia, Q. Tian, S. Ling, Y. Liu, S. Yang, Z. Shao. miR-145suppresses osteogenic differentiation by targeting Sp7. FEBSLett. 2013; 587: 3027–31.
  • [74] N.X. Chen, K. Kiattisunthorn, K.D. O’Neill, X. Chen, R.N.Moorthi, V.H. Gattone, et al. Decreased microRNA is involvedin the vascular remodeling abnormalities in chronic kidneydisease (CKD). PLoS One. 2013; 8: e64558.
  • [75] T. Wu, M. Xie, X. Wang, X. Jiang, J. Li, H. Huang. miR-155modulates TNF-α-inhibited osteogenic differentiation bytargeting SOCS1 expression. Bone. 2012; 51: 498–505.
  • [76] N. Nohata, T. Hanazawa, H. Enokida, N. Seki. microRNA-1/133aand microRNA-206/133b clusters: dysregulation and functionalroles in human cancers. Oncotarget. 2012; 3: 9–21.
  • [77] H. Inose, H. Ochi, A. Kimura, K. Fujita, R. Xu, S. Sato, et al. AmicroRNA regulatory mechanism of osteoblast differentiation.Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 20794–9.[Crossref]
  • [78] B. Bakhshandeh, M. Hafizi, N. Ghaemi, M. Soleimani.Down-regulation of miRNA-221 triggers osteogenic differentiationin human stem cells. Biotechnol. Lett. 2012; 34:1579–87.
  • [79] X. Liu, Y. Cheng, J. Yang, L. Xu, C. Zhang. Cell-specific effects ofmiR-221/222 in vessels: molecular mechanism and therapeuticapplication. J. Mol. Cell. Cardiol. 2012; 52: 245–55.
  • [80] N.C.W. Mackenzie, K.A. Staines, D. Zhu, P. Genever, V.E.Macrae. miRNA-221 and miRNA-222 synergistically function topromote vascular calcification. Cell Biochem. Funct. 2014; 32:209–16.
  • [81] T. Eskildsen, H. Taipaleenmäki, J. Stenvang, B.M. Abdallah, N.Ditzel, A.Y. Nossent, et al. MicroRNA-138 regulates osteogenicdifferentiation of human stromal (mesenchymal) stem cells invivo. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 6139–44.
  • [82] Y.J. Kim, S.W. Bae, S.S. Yu, Y.C. Bae, J.S. Jung. miR-196aregulates proliferation and osteogenic differentiation inmesenchymal stem cells derived from human adipose tissue. J.Bone Miner. Res. 2009; 24: 816–25.
  • [83] T. Wang, Z. Xu. miR-27 promotes osteoblast differentiation bymodulating Wnt signaling. Biochem. Biophys. Res. Commun.2010; 402: 186–9.
  • [84] A.M. Schaap-Oziemlak, R.A. Raymakers, S.M. Bergevoet,C. Gilissen, B.J.H. Jansen, G.J. Adema, et al. MicroRNAhsa-miR-135b regulates mineralization in osteogenic differentiationof human unrestricted somatic stem cells. Stem CellsDev. 2010; 19: 877–85.
  • [85] B. Bakhshandeh, M. Soleimani, M. Hafizi, S.H. Paylakhi, N.Ghaemi. MicroRNA signature associated with osteogeniclineage commitment. Mol. Biol. Rep. 2012; 39: 7569–81.[Crossref]
  • [86] H.-I. Trompeter, J. Dreesen, E. Hermann, K.M. Iwaniuk, M.Hafner, N. Renwick, et al. MicroRNAs miR-26a, miR-26b, andmiR-29b accelerate osteogenic differentiation of unrestrictedsomatic stem cells from human cord blood. BMC Genomics.2013; 14: 111.[Crossref]
  • [87] F. Yu, Y. Cui, X. Zhou, X. Zhang, J. Han. Osteogenic differentiationof human ligament fibroblasts induced by conditionedmedium of osteoclast-like cells. Biosci. Trends. 2011; 5: 46–51.[Crossref]
  • [88] J.-H. Li, S. Liu, H. Zhou, L.-H. Qu, J.-H. Yang. starBase v2.0:decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNAinteraction networks from large-scale CLIP-Seq data. NucleicAcids Res. 2014; 42: D92–7.
  • [89] B.P. Lewis, C.B. Burge, D.P. Bartel. Conserved seed pairing,often flanked by adenosines, indicates that thousands ofhuman genes are microRNA targets. Cell. 2005; 120: 15–20.[Crossref]
  • [90] A. Zampetaki, P. Willeit, I. Drozdov, S. Kiechl, M. Mayr. Profilingof circulating microRNAs: from single biomarkers to re-wirednetworks. Cardiovasc. Res. 2012; 93: 555–62.[Crossref]
  • [91] W. Poller, R. Hajjar, H.-P. Schultheiss, H. Fechner. Cardiactargeteddelivery of regulatory RNA molecules and genes forthe treatment of heart failure. Cardiovasc. Res. 2010; 86:353–64.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.