PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 | 1 |
Tytuł artykułu

MicroRNAs in diabetes - are they perpetrators in disguise or just epiphenomena?

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
MicroRNAs (miRNA) are non-coding RNAs, the majority of which are 22 nucleotide in size. They regulate gene transcription and control more than 50% of the mammalian genome. Although functional significance and targets of several miRNAs are yet to be identified, they may be regarded as controller of cellular physiology and function. Through such regulation they play vital roles in normal and diseased states. In the context of diabetes and chronic diabetic complications, recent research has identified alterations of a significant number of miRNAs. However, in a complex chronic disease like diabetes, multiple transcripts may also change in a temporal fashion depending on the disease progression and activation of counter-regulatory mechanisms. Hence, it is also possible that some miRNA changes may not be causally related to the disease pathogenesis and represent epiphenomena. To date, over 500 studies have addressed the role of miRNAs in the pathogenesis of type 1 and type 2 diabetes and chronic diabetic complications. Majority of the altered miRNAs appear to have pathogenetic roles. In this review, we have tried to identify alterations of specific miRNAs and the pathways they may regulate. We have also tried to identify whether some of these miRNA alterations may form basis of potential treatments
Słowa kluczowe
Wydawca

Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
otrzymano
2014-01-21
zaakceptowano
2014-04-29
online
2014-09-19
Twórcy
  • Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
  • Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
Bibliografia
  • [1] The ENCODE Project Consortium, An integrated encyclopedia of DNA elements in the human genome. Nature, 2012. 489 p. 57-74.
  • [2] Dinger M.E; Pang K.C; Mercer T.R; Mattick J.S, Differentiating Protein-Coding and Noncoding RNA: Challenges and Ambiguities PloS Comp Bio, 2008. 4: p. 1-5.
  • [3] Sun K; Lai E.C, Adult-specific functions of animal microRNAs. Nat Rev Genet, 2013. 14: p. 535-548.[Crossref]
  • [4] Huang Y; Zhang J.L; Yu X.L; Xu T.S; Wang Z.B; Cheng X.C, Molecular functions of small regulatory noncoding RNA. Biochemistry (Mosc), 2013. 78: p. 221-230.[Crossref]
  • [5] Xu L; Yang B.F; Ai J, MicroRNA transport: a new way in cell communication. J Cell Physiol., 2013. 228: p. 1713-1719.[Crossref]
  • [6] Shivdasani R.A, MicroRNAs: regulators of gene expression and cell differentiation. Blood, 2006. 108: p. 3646-3653.[Crossref]
  • [7] Chen C.H; Guo M; Hay B.A, Identifying microRNA regulators of cell death in Drosophila. Methods Mol Biol, 2006. 342: p. 229-240.
  • [8] McClelland A.D; Kantharidis P, microRNA in the development of diabetic complications. Clin Sci (Lond), 2014. 126(2): p. 95-110.
  • [9] Rebane A; Akdis C.A, MicroRNAs: Essential players in the regulation of inflammation. J Allergy Clin Immunol., 2013. 132: p. 15-26.[Crossref]
  • [10] TenOever B.R, RNA viruses and the host microRNA machinery. Nat Rev Microbiol. , 2013. 11: p. 169-180.[Crossref]
  • [11] Shen J; Stass S.A; Jiang F, MicroRNAs as potential biomarkers in human solid tumors. Cancer Lett., 2013. 329: p. 125-136.
  • [12] Foster P.S; Plank M; Collison A; Tay H.L; Kaiko G.E; Li J; Johnston S.L; et al, The emerging role of microRNAs in regulating immune and inflammatory responses in the lung. Immunol Rev, 2013. 253: p. 198-215.
  • [13] Feng B; Chen S; George B; Feng Q; Chakrabarti S, miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev, 2010. 26: p. 40-49.
  • [14] Feng B; Chen S; McArthur K; Wu Y; Sen S; Ding Q; Feldman R.D; Chakrabarti S, miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes, 2011. 60: p. 2975-2984.
  • [15] McArthur K; Feng B; Wu Y;Chen S.C; Chakrabarti S, MicroRNA-200b Regulates Vascular Endothelial Growth Factor-Mediated Alterations in Diabetic Retinopathy. Diabetes 2011. 60: p. 1314-1323
  • [16] Cullen B.R, Derivation and function of small interfering RNAs and microRNAs. Virus Res, 2004. 102: p. 3-9.[Crossref]
  • [17] Yi R; Qin Y; Macara I.G; Cullen B.R, Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev., 2003. 17: p. 3011-3016.[PubMed][Crossref]
  • [18] Zeng Y; Cullen B.R, Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res. , 2004. 32: p. 4776-4785.[Crossref]
  • [19] Tijsterman M; Plasterk R.H, Dicers at RISC; the mechanism of RNAi. Cell Death Differ., 2004. 2 p. 1-3.
  • [20] Meister G, Argonaute proteins: functional insights and emerging roles. Nature Reviews Genetics, 2013. 4: p. 447-459.[Crossref]
  • [21] Poy M.N; Eliasson L; Krutzfeldt J; Kuwajima S; Ma X; Macdonald P.E; Pfeffer S; Tuschl T; Rajewsky N; et al, A pancreatic isletspecific microRNA regulates insulin secretion. Nature, 2004. 432: p. 226-230.
  • [22] Lynn F.C; Skewes-Cox P; Kosaka Y; McManus M.T; Harfe B.D; German M.S, MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 2007. 56: p. 2938-2945.[Crossref]
  • [23] Melkman-Zehavi T; Oren R; Kredo-Russo S; et al, miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. . EMBO J, 2011. 30(5): p. 835-845.[Crossref]
  • [24] Zhuang G; Meng C; Guo X; Cheruku P.S; Shi L; Xu H; Li H; et al, A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation, 2012. 125: p. 2892-2903.
  • [25] Liu W; Bi P; Shan T; Yang X; Yin H; Wang Y; Liu N; Rudnicki M.A; Kuang S, miR-133a Regulates Adipocyte Browning In Vivo. PLoS Genet 2013. 9: p. 1-11.
  • [26] Plaisance V; Abderrahmani A; Perret-Menoud V; Jacquemin P; Lemaigre F; Regazzi R, MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulinproducing cells. J Biol Chem., 2006. 281: p. 26932-26942.[Crossref]
  • [27] Poy, M.N., et al., miR-375 maintains normal pancreatic alphaand beta-cell mass. Proc Natl Acad Sci U S A, 2009. 106(14): p. 5813-8.
  • [28] Nieto M; Hevia P; Garcia E; Klein D; Alvarez-Cabela S; Bravo-Egana V; Rosero S; Damaris Molano R; et al, Antisense miR-7 Impairs Insulin Expression in Developing Pancreas and in Cultured Pancreatic Buds. Cell Transplantation, 2012. 21: p. 1761-1774.[Crossref]
  • [29] Kredo-Russo S; Mandelbaum A.D; Ness A; Alon I; Lennox K.A; Behlke M.A; Hornstein E, Pancreas-enriched miRNA refines endocrine cell differentiation. Development, 2012. 139: p. 3021-3031.[Crossref]
  • [30] Baroukh N; Ravier M.A; Loder M.K; Hill E.V; Bounacer A; Scharfmann R; Rutter G.A; Van Obberghen E, MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem., 2007. 282: p. 19575-19588.
  • [31] Sun L.L; Jiang B.G; Li W.T; Zou J.J; Shi Y.Q; Liu Z.M, MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diab Res Clin Pract. , 2011. 91: p. 94-100.[Crossref]
  • [32] Wijesekara N; Zhang L.H; Kang M.H; Abraham T; Bhattacharjee A; Warnock G.L; Verchere C.B; Hayden M.R, miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 2012. 61: p. 658-658.
  • [33] Zhang Z.W; Zhang L.Q; Ding L; Wang F; Sun Y.J; An Y; Zhao Y; Li Y.H; Teng C.B, MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1. FEBS Lett., 2011. 585: p. 2592-2598.
  • [34] Karolina D.S; Armugam A; Tavintharan S; Wong M.T; Lim S.C; et al, MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One, 2011. 6: p. 1-19.
  • [35] Setyowati Karolina D; Sepramaniam S; Tan H.Z; Armugam A; Jeyaseelan K, miR-25 and miR-92a regulate insulin I biosynthesis in rats. RNA Biol., 2013. 10: p. 1365-1378.[Crossref]
  • [36] Zhu Y; You W; Wang H; Li Y; Qiao N; Shi Y; Zhang C; Bleich D; Han X, MicroRNA-24/MODY gene regulatory pathway mediates pancreatic β-cell dysfunction. Diabetes, 2013. 62: p. 3194-3206.[Crossref]
  • [37] Zhao X; Mohan R; Ozcan S;Tang X, MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells. J Biol Chem. , 2012. 287: p. 31155-31164.[Crossref]
  • [38] Lee E.L; Lee M.J; Abdelmohsen K; Kim W; Srikantan S; Martindale J.L; Kim H.H; Marasa B.S; Gorospe M; et al, miR-130 Suppresses Adipogenesis by Inhibiting Peroxisome Proliferator-Activated Receptor γ Expression. Mol Cell Biol. , 2011. 31: p. 626-638.
  • [39] Kim C;Lee H; Cho Y.M; Kwon O; Kim W; Lee E.K, TNFα-induced miR-130 resulted in adipocyte dysfunction during obesityrelated inflammation. FEBS Letters, 2013. 587: p. 3853-3858.
  • [40] Ferland-McCollough D; Fernandez-Twinn D.S; Cannell I.G; David H; Warner M; Willis A.E; Ozanne S.E; et al, Programming of adipose tissue miR-483-3p and GDF-3 expression by maternal diet in type 2 diabetes. Cell Death Differ, 2012. 19: p. 1003-1012.
  • [41] Xie H; Lim B; Lodish H.F, MicroRNAs Induced During Adipogenesis that Accelerate Fat Cell Development Are Downregulated in Obesity. Diabetes, 2009. 58: p. 1050-1057[Crossref]
  • [42] Cypess A.M; Kahn C.R, Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes, 2010. 17: p. 143-149.[Crossref]
  • [43] Mori M; Nakagami H; Rodriguez-Araujo G; Nimura K; Kaneda Y, Essential Role for miR-196a in Brown Adipogenesis of White Fat Progenitor Cells. PLoS Bio, 2012. 10(4): p. 1-15.
  • [44] Arner E; Mejhert N; Kulyte A; Balwierz P.J; Pachkov M; Cormont M; Lorente-Cebrian S; Ehrlund A; Laurencikiene J; et al, Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes, 2012. 61: p. 1986-1993.[Crossref]
  • [45] Zhang W; Rojas M; Lilly B; Tsai N; Lemtalsi; Liou G.I; Caldwell R.D; Caldwell R.B, NAD(P)H Oxidase-Dependent Regulation of CCL2 Production during Retinal Inflammation. Invest Ophthalmol Vis Sci., 2009. 50: p. 3033-3040.[Crossref]
  • [46] Chen Y.H; Heneidi S; Lee J.M; Layman L.C; Stepp D.W; Gamboa G.M; Chen B.S; Chazenbalk G; Azziz R, miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes, 2013. 62: p. 2278-2286.[Crossref]
  • [47] Zhou B; Li C; Qi W; Zhang Y;Zhang F; Wu J.X; Hu Y.N; Wu D.M; et al, Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia, 2012. 55: p. 2032-2043.
  • [48] Chan L; Terashima T; Fujimiya M; Kojima H, Chronic Diabetic Complications: The Body’s Adaptive Response to Hyperglycemia Gone Awry? Trans Am Clin Climatol Assoc., 2006. 117: p. 341-352.
  • [49] Fowler M.J, Microvascular and Macrovascular Complications of Diabetes. Clin. Diab., 2008. 26: p. 77-82.[Crossref]
  • [50] Brownlee M, Biochemistry and molecular cell biology of diabetic complications. Nature, 2001. 414 p. 813-820.[Crossref]
  • [51] Khan Z.A; Farhangkhoee H; Chakrabarti S, Towards newer molecular targets for chronic diabetic complications. Curr Vasc Pharmacol, 2006. 4: p. 45-57.[Crossref]
  • [52] Kato M; Zhang J; Wang M; Lanting L; Yuan H; Rossi J.J; Natarajan R, MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A, 2007. 104: p. 3432-3437.
  • [53] Krupa A; Jenkins R; Luo D.D; Phillips A; Fraser D, Loss of MicroRNA-192 Promotes Fibrogenesis in Diabetic Nephropathy. J Am Soc Nephrol., 2010. 21: p. 438-447.
  • [54] Wang B; Herman-Edelstein M; Koh P; Burns W; Jandeleit- Dahm K; Watson A; et al, E-Cadherin Expression Is Regulated by miR-192/215 by a Mechanism That Is Independent of the Profibrotic Effects of Transforming Growth Factor-β. Diabetes 2010. 59: p. 1794-1802
  • [55] Deshpande S.D; Putta S; Wang M; Lai J.Y; Bitzer M; Nelson R.G; Lanting L.L; Kato M; Natarajan R, Transforming Growth Factor-β induced cross talk between p53 and a microRNA in the pathogenesis of Diabetic Nephropathy. Diabetes, 2013 62: p. 3151-3162.[Crossref]
  • [56] Wang Q; Wang Y; Minto A.W; Wang J; Shi Q; Li X; Quigg R.J, MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J., 2008. 22: p. 4126-4135.
  • [57] Zhang Z; Peng H; Chen J; Chen X; Han F; Xu X; He X; Yan N, MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett. , 2009. 583: p. 2009-2014.[Crossref]
  • [58] Zhong X; Chung A.C; Chen H.Y; Dong Y; Meng X.M; Li R; Yang W; Hou F.F; Lan H.Y, miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia, 2013. 56: p. 663-674.[Crossref]
  • [59] Wang B; Komers R; Carew R; Winbanks C.E; Xu B; Herman- Edelstein M; Koh P;Thomas M; et al, Suppression of microRNA-29 Expression by TGF-b1Promotes Collagen Expression and Renal Fibrosis. J Am Soc Nephrol., 2012. 23: p. 252-262.
  • [60] Qin W; Chung A.C; Huang X.R; Meng X; Hui D.S.C; Yu C; Sung J.J.Y; Lan H.Y, TGF-β/Smad3 Signaling Promotes Renal Fibrosis by Inhibiting miR-29. J Am Soc Nephrol. , 2011. 22: p. 1462-1474
  • [61] Long J; Wang Y; Danesh F.R, MicroRNA-29c Is a Signature MicroRNA under High Glucose Conditions That Targets Sprouty Homolog 1, and Its in Vivo Knockdown Prevents Progression of Diabetic Nephropathy. J Biol Chem, 2011. 286: p. 11837-11848.[Crossref]
  • [62] Kriegel A.J; Liu Y; Fang Y; Ding X; Liang M, The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics, 2012. 144: p. 237-244.[Crossref]
  • [63] Wang B; Jha J.C; Hagiwara S; McClelland A.D: Jandeleit-Dahm K; Thomas M.C; Cooper M.E; Kantharidis P, Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kid Int. , 2014. 85: p. 352-361.[Crossref]
  • [64] Long J; Wang Y; Wang W; Chang B.H; Danesh F.R, Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem. , 2010. 285: p. 23457-23465.
  • [65] Xiong M; Jiang L; Zhou Y; Qiu W; Fang L; Tan R; Wen P; Yang J, The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol., 2012. 302: p. 369-379.
  • [66] Brabletz S; Brabletz T, The ZEB/miR-200 feedback loop-a motor of cellular plasticity in development and cancer? EMBO Rep, 2010. 11: p. 670-700.
  • [67] Oba S; Kumano S; Suzuki E; Nishimatsu H; Takahashi M; Takamori H; Kasuya M; Ogawa Y; et al, miR-200b Precursor Can Ameliorate Renal Tubulointerstitial Fibrosis. PLoS One, 2010. 5: p. 1-6.
  • [68] Wang B; Koh P; Winbanks C; Coughlan M.T; McClelland A; Watson A; Jandeleit-Dahm K; et al, miR-200a Prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes, 2011. 60: p. 280-287.
  • [69] Park JT; Kato M; Yuan H; Castro N; Lanting L; Wang M; Natarajan R, FOG2 protein down-regulation by transforming growth factor-β1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy. J Biol Chem., 2013. 288: p. 22469-22480.
  • [70] Alvarez M.L; Khosroheidari M; Eddy E; Kiefer J, Role of MicroRNA 1207-5P and Its Host Gene, the Long Non-Coding RNA Pvt1, as Mediators of Extracellular Matrix Accumulation in the Kidney: Implications for Diabetic Nephropathy. PLoS One, 2013. 8 p. 1-14.
  • [71] Dey N; Das F; Ghosh-Choudhury N; Mandal C.C; Parekh D.J; Block K; et al, microRNA-21 governs TORC1 activation in renal cancer cell proliferation and invasion. PLoS One., 2012. 7: p. 1-17.
  • [72] Faherty N; Curran S.P; O’Donovan H; Martin F; Godson C; Brazil D.P; Crean J.K, CCN2/CTGF increases expression of miR-302 microRNAs, which target the TGFb type II receptor with implications for nephropathic cell phenotypes. J.Cell Sci., 2012. 125: p. 5621-5629.
  • [73] Wang N; Zhou Y; Jiang L; Li D; Yang J; Zhang C.Y; Zen K, Urinary microRNA-10a and microRNA-30d serve as novel, sensitive and specific biomarkers for kidney injury. PLoS One, 2012. 7: p. 1-8.
  • [74] Sharma V; McNeill J.H, Diabetic cardiomyopathy: Where are we 40 years later? Can J Cardiol., 2006. 22: p. 305-308.[Crossref]
  • [75] Pappachan J.M; Varughese; Sriraman R; Arunagirinathan G, Diabetic cardiomyopathy: Pathophysiology, diagnostic evaluation and management. World J Diab., 2013. 4: p. 177-189.
  • [76] Chen S; Putheveetil P; Feng B; Matkovich S.J; Dorn G.W; Chakrabarti S, Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J. Cell. Mol. Med. , 2014. 18: p. 415-421.
  • [77] Abdellatif M, The Role of MicroRNA-133 in Cardiac Hypertrophy Uncovered. Circ Res., 2010. 106: p. 16-18.
  • [78] Simona Greco S; Fasanaro P; Castelvecchio S; D’Alessandra Y; Arcelli D; Di Donato M; Malavazos A; Capogrossi M.C; Menicanti L; Martelli F, MicroRNA Dysregulation in Diabetic Ischemic Heart Failure Patients. Diabetes, 2012. 61: p. 1633-1641.[Crossref]
  • [79] Chavali V; Tyagi S.C; Mishra P.K, MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem Biophys Res Commun, 2012. 425: p. 668-672.
  • [80] Kishore R; Verma S.K; Mackie A.R; Vaughan E.E; Abramova T.V; Aiko I; Krishnamurthy P, Bone marrow progenitor cell therapymediated paracrine regulation of cardiac miRNA-155 modulates fibrotic response in diabetic hearts. PLoS One, 2013. 8: p. 1-12.
  • [81] Shen E; Diao X; Wang X; Chen R; Hu B, MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. Am J Pathol., 2011. 179: p. 639-650.[Crossref]
  • [82] Shan Z.X; Lin Q.X; Deng C.Y; Zhu J.N; Mai L.P; Liu J.L; Fu Y.H; Liu X.Y; et al, miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett., 2010. 584: p. 3592-3600.
  • [83] Prasanth Puthanveetil P; Wan A; Rodrigues B, FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival. Cardiovas Res., 2013. 97: p. 393-403.[Crossref]
  • [84] Diamant M, Current studies of diabetic cardiomyopathy and the advancement of our knowledge: time to learn from history, guidelines,...and other disciplines? Eur J Heart Fail, 2012. 14: p. 115-117.[Crossref]
  • [85] Wang X.H; Qian R.Z; Zhang W; Chen S.F; Jin H.M; Hu R.M, MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol., 2009. 36: p. 181-188.
  • [86] Feng B;l Chakrabarti S, miR-320 Regulates Glucose-Induced Gene Expression in Diabetes. ISRN Endocrinology, 2012. 2012: p. 1-7.
  • [87] Baseler W.A; Thapa D; Jagannathan R; Dabkowski E.R; Croston T.L; Hollander J.M, miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart. Am J Physiol Cell Physiol, 2012. 303: p. 1244-C1251.
  • [88] Gallego M; Alday A; Urrutia J; Casis O, Transient outward potassium channel regulation in healthy and diabetic hearts. Can J Physiol Pharmacol, 2009. 87: p. 77-83.[Crossref]
  • [89] Panguluri S.K; Tur J; Chapalamadugu K.C; Katnik C; Cuevas J; Tipparaju S.M, MicroRNA-301a mediated regulation of Kv4.2 in diabetes: identification of key modulators. PLoS One, 2013. 8: p. 1-16.
  • [90] Peter K; Chen Y.C; Bui A.V; Diesch J; Manasseh R; Hausding C; Rivera J; Haviv I; Agrotis A; Htun N.M; et al, A Novel Mouse Model of Atherosclerotic Plaque Instability for Drug Testing and Mechanistic/Therapeutic Discoveries Using Gene and microRNA Expression Profiling. . Circ. Res., 2014. 114: p.:214-226.
  • [91] Li Y; Song Y.H; Li F; Yang T; Lu Y.W; Geng Y.J, MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochem Biophys Res Commun., 2009. 381: p. 81-93.
  • [92] Murray A.R; Chen Q; Takahashi Y; Zhou K.K; Park K; Ma J.X, MicroRNA-200b downregulates oxidation resistance 1 (Oxr1) expression in the retina of type 1 diabetes model. Invest Ophthalmol Vis Sci., 2013. 54: p. 1689-1697.
  • [93] Kovacs B; Lumayag S; Cowan C; Xu S, microRNAs in Early Diabetic Retinopathy in Streptozotocin-induced Diabetic Rats Invest Ophthalmol Vis Sci., 2011. 10: p. 1-27.
  • [94] Khan Z.A; Cukiernik M; Gonder J.R; Chakrabarti S, Oncofetal Fibronectin in Diabetic Retinopathy. Invest. Ophthalmol. Vis. Sci. January 2004 vol. 45 no. 1 287-295 2004. 45: p. 287-295.[Crossref]
  • [95] Silva V.A; Polesskaya A; Sousa T.A; Correa V.M; Andre N.D; Reis R.I; Kettelhut I.C; Harel-Bellan A; De Lucca F.L, Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Mol Vis. , 2011. 17: p. 2228-2240.
  • [96] Wu J.H; Gao Y; Ren A.J; Zhao S.H; Zhong M; Peng Y.J; Shen W; Jing M; Liu L, Altered microRNA expression profiles in retinas with diabetic retinopathy. Ophthalmic Res. , 2012. 47: p. 195-201.[Crossref]
  • [97] Ling S; Birnbaum Y; Nanhwan M.K; Thomas B; Bajaj ; Ye Y, MicroRNA-dependent cross-talk between VEGF and HIF1α in the diabetic retina. Cell Signal., 2013. 25: p. 2840-2847.[Crossref]
  • [98] Nakamura A;Terauchi Y, Lessons from Mouse Models of High Fat Diet Induced NAFLD. Int J Mol Sci., 2013. 14: p. 21240-21257.[Crossref]
  • [99] Trajkovski M; Hausser J; Soutschek J; Bhat B; Akin A; Zavolan M; Heim M.H; Stoffel M, MicroRNAs 103 and 107 regulate insulin sensitivity. Nature, 2011. 474: p. 649-653.[Crossref]
  • [100] Herrera B.M; Lockstone H.E; Taylor J.M; Ria M; Barrett A; Collins S; Kaisaki P; Argoud K; et al, Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia, 2010. 53: p. 1099-1109.
  • [101] Li S; Chen X; Zhang H: Liang X: Xiang Y; Yu C: Zen K; Li Y; Zhang C, Differential expression of microRNAs in mouse liver under aberrant energy metabolic status J Lipid Res, 2009. 50: p. 1756-1765. [Crossref]
  • [102] Herrera B.M; Lockstone H.E; Taylor J.N; Wills Q.F; Kaisaki P.J; Barrett A; Camps C; Fernandez C; et al, MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes. BMC Medical Genomics, 2009. 2: p. 1-11.
  • [103] Miller A.M; Gilchrist D.S; Nijjar J; Araldi E; Ramirez C.M; Lavery C.A; Fernandez-Hernando C; McInnes I.B; Kurowska-Stolarska M, MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PLoS One, 2013. 8(8): p. 1-10.
  • [104] Whittaker R; Loy P.A; Sisman E; Suyama E: Aza-Blanc A; Ingermanson R.A; et al, Identification of MicroRNAs That Control Lipid Droplet Formation and Growth in Hepatocytes via High-Content Screening. J Biomol Screen, 2010. 15: p. 798-805.[Crossref]
  • [105] Jordan S.D; Kruger M; Willmes D.M; Redemann N; Wunderlich F.T; Bronneke H.S; Merkwirth C; et al, Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol, 2011. 13: p. 434-446.
  • [106] Zhao H; Sui Y; Qiao C; Yip K.Y; Leung R.K; et al, Sustained Antidiabetic Effects of a Berberine-Containing Chinese Herbal Medicine Through Regulation of Hepatic Gene Expression. Diabetes, 2012. 61: p. 933-943.[Crossref]
  • [107] Wang B; Herman-Edelstein M; Koh P; Burns W; Jandeleit-Dahm K; Watson A; Saleem M; et al, Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res., 2010. 107: p. 810-817.
  • [108] Caporali A; Meloni M; Vollenkle C; Bonci D; Sala-Newby G.B; Addis R; Spinetti G; Losa S; Masson R; et al, Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation, 2011. 123: p. 282-291.
  • [109] Mocharla P; Briand S; Giannotti G; Dorries C; Jakob P; Paneni F; Luscher T; Landmesser U, AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood, 2013. 121(1): p. 226-236.
  • [110] Karolina D.S; Armugam A; Tavintharan S; Wong M.T; Lim S.C; Sum C.F; Jeyaseelan K, MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One, 2011. 6(8): p. 1-19.
  • [111] Boettger T; Braun T; Rooij E, A New Level of Complexity-The Role of MicroRNAs in Cardiovascular Development. Circulation Research, 2012. 110: p. 1000-1013[Crossref]
  • [112] Chen X; Ba Y; Ma L; Cai X; Yin Y; Wang K; Guo J; Zhang Y; et al, Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res., 2008. 18: p. 997-1006.[Crossref]
  • [113] Rooij E.V; Purcell A.L; Levin A.A, Developing MicroRNA Therapeutics. Circ Res., 2012. 110: p. 496-507.[Crossref]
  • [114] Correa-Medina M; Bravo-Egana V; Rosero S; Ricordi C; Edlund H; Diez J; Pastori R.L, MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns, 2009. 4: p. 193-199.[Crossref]
  • [115] Ramachandran D; Roy U; Garg S; Ghosh S; Pathak S; Kolthur- Seetharam U, Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J., 2011. 278: p. 1167-1174.
  • [116] Shen J; Wan R; Hu G; Yang L; Xiong J; Wang F; Shen J; He S; Guo X; Ni J; Guo C; Wang X, miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro. Pancreatology, 2012. 12: p. 91-99. [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_micrnado-2014-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.