Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 1 | 1 |
Tytuł artykułu

Rutherford Backscattering Spectroscopy of Mass Transport by Transformation of PbI2into CH3NH3PbI3within np-TiO2

Treść / Zawartość
Warianty tytułu
Języki publikacji
Mass transport during transformation of PbI2 infiltrated in nanoporous TiO2 into CH3NH3PbI3 has been investigated by Rutherford backscattering spectroscopy (RBS). Fast initial reaction kinetics were confirmed using optical ex-situ and in-situ measurements. Mapping with energy dispersive X-ray spectroscopy of the cross section of samples revealed a homogeneous PbI2 infiltration in nanoporous TiO2 before transformation but an accumulation of Pb and I at the surface after transformation, in accordance with a depletion of Pb and I in a near surface region. Quantitative depth profiles of Pb and I were obtained from RBS analysis. An instant degradation of CH3NH3PbI3 to PbI2 and volatiles upon ion radiation was found. The concentration profiles of Pb could be simulated with a one dimensional diffusion model taking into account an effective diffusion coefficient of Pb in the nanocomposite (about 1.5 10-11 cm2/s) as well as a parameter considering frazzling at the surface due to formation of crystallites.

Opis fizyczny
  • Helmholtz-Zentrum Berlin für
    Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin,
  • Helmholtz-Zentrum Berlin für
    Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin,
  • Tallinn University of Technology, Department of Materials
    Science, Ehitajate tee 5, Tallinn 19086, Estonia
  • Helmholtz-Zentrum Berlin für
    Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin,
  • Department of Materials Science,
    Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
  • Helmholtz-Zentrum Berlin für
    Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin,
  • Helmholtz-Zentrum Berlin für
    Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin,
  • Department of Materials Science,
    Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
  • [1] Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F.,Mhaisalkar, S.G., et al., Synthesis and crystal chemistry of thehybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solarcell applications. , J. Mater. Chem. A , 2013, 1, 5628–5641.[Crossref]
  • [2] Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A., Kanemitsu,Y., Near-band-edge optical responses of solution-processedorganic–inorganic hybrid perovskite CH 3 NH 3 PbI 3 onmesoporous TiO 2 electrodes. , Appl. Phys. Express , 2014, 7,32302–32305.[Crossref]
  • [3] Xing, G., Mathews, N., Lim, S.S., Yantara, N., Liu, X., Sabba, D.,et al., Low-temperature solution-processed wavelength-tunableperovskites for lasing. , Nat. Mater. , 2014, 13, 476–480.
  • [4] Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel,M., et al., Long-range balanced electron- and hole-transportlengths in organic-inorganic CH3NH3PbI3. , Science , 2013,342, 344–351.
  • [5] Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer,M.J.P., Leijtens, T., et al., Electron-hole diffusion lengthsexceeding 1 micrometer in an organometal trihalide perovskiteabsorber. , Science , 2013, 342, 341–344.
  • [6] Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., Organometalhalide perovskites as visible-light sensitizers for photovoltaiccells. , J. Am. Chem. Soc. , 2009, 131, 6050–6051.
  • [7] Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P.,Nazeeruddin, M.K., et al., Sequential deposition as a route tohigh-performance perovskite-sensitized solar cells. , Nature ,2013, 499, 316–319.
  • [8] Liu, D., Kelly, T.L., Perovskite solar cells with a planar heterojunctionstructure prepared using room-temperature solutionprocessing techniques. , Nat. Photonics , 2013, 8, 133–138.[Crossref]
  • [9] Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S. Il,Solvent engineering for high-performance inorganic-organichybrid perovskite solar cells. , Nat. Mater. , 2014, 13, 897–903.
  • [10] NREL, Research Cell Efficiency Records , 2014,
  • [11] Mitzi, D., Dimitrakopoulos, C.D., Kosbar, L.L., Organic-inorganicelectronic devices based on hybrid perovskites. , Device Res.Conf. , 2001, 467, 185–186.
  • [12] Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A., Snaith,H.J., Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. , Adv.Funct. Mater. , 2014, 24, 151–157.[Crossref]
  • [13] Jeon, N.J., Lee, H.G., Kim, Y.C., Seo, J., Noh, J.H., Lee, J., etal., o-Methoxy substituents in spiro-OMeTAD for efficientinorganic-organic hybrid perovskite solar cells. , J. Am. Chem.Soc. , 2014, 136, 7837–7840.
  • [14] Ball, J.M., Lee, M.M., Hey, A., Snaith, H.J., Low-temperatureprocessed meso-superstructured to thin-film perovskite solarcells. , Energy Environ. Sci. , 2013, 6, 1739–1743.[Crossref]
  • [15] Carnie, M.J., Charbonneau, C., Davies, M.L., Troughton,J., Watson, T.M., Wojciechowski, K., et al., A one-step lowtemperature processing route for organolead halide perovskitesolar cells. , Chem. Commun. (Camb). , 2013, 49, 7893–7895.[Crossref]
  • [16] Eperon, G.E., Burlakov, V.M., Goriely, A., Snaith, H.J., Neutralcolor semitransparent microstructured perovskite solar cells. ,ACS Nano , 2014, 8, 591–598.[Crossref]
  • [17] Roldán-Carmona, C., Malinkiewicz, O., Soriano, A., MínguezEspallargas, G., Garcia, A., Reinecke, P., et al., Flexible highefficiency perovskite solar cells. , Energy Environ. Sci. , 2014, 7,994–998.[Crossref]
  • [18] Liang, K., Mitzi, D.B., Prikas, M.T., Synthesis and Characterizationof Organic−Inorganic Perovskite Thin Films PreparedUsing a Versatile Two-Step Dipping Technique. , Chem. Mater. ,1998, 10, 403–411.[Crossref]
  • [19] Yongzhen, W., Islam, A., Yang, X., Qin, C., Liu, J., Zhang, K., etal., Retarding the crystallization of PbI2 for highly reproducibleplanar-structured perovskite solar cells via sequentialdeposition. , Energy Environ. Sci. , 2014, 7, 2934–2938.
  • [20] Ma, Y., Zheng, L., Chung, Y.-H., Chu, S., Xiao, L., Chen, Z., et al.,A highly efficient mesoscopic solar cell based on CH3NH3PbI3-xClx fabricated via sequential solution deposition. , Chem.Commun. (Camb). , 2014, 50, 12458---61.[Crossref]
  • [21] Barrows, A., Pearson, A., Kwak, C., Dunbar, A., Buckley,A., Lidzey, D., Efficient planar heterojunction mixed-halideperovskite solar cells deposited via spray-deposition. , EnergyEnviron. Sci. , 2014, 7, 2944–2950.[Crossref]
  • [22] Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H.,et al., Planar heterojunction perovskite solar cells via vaporassistedsolution process. , J. Am. Chem. Soc. , 2014, 136,622–625.
  • [23] Im, J.-H., Kim, H.-S., Park, N.-G., Morphology-photovoltaicproperty correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3., APL Mater., 2014, 2,081510–081518.
  • [24] Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G., Semiconductingtin and lead iodide perovskites with organic cations:phase transitions, high mobilities, and near-infrared photoluminescentproperties., Inorg. Chem., 2013, 52, 9019–9038.
  • [25] De Bastiani, M., D’Innocenzo, V., Stranks, S.D., Snaith, H.J.,Petrozza, A., Role of the crystallization substrate on thephotoluminescence properties of organo-lead mixed halidesperovskites., Apl Mater., 2014, 2, 081509–081515.
  • [26] Supasai, T., Rujisamphan, N., Ullrich, K., Chemseddine, A.,Dittrich, T., Formation of a passivating CH3NH3PbI3/PbI2interface during moderate heating of CH3NH3PbI3 layers.,Appl. Phys. Lett., 2013, 103, 183906–183909.
  • [27] Somsongkul, V., Lang, F., Jeong, A.R., Rusu, M., Arunchaiya,M., Dittrich, T., Hole blocking PbI 2 /CH 3 NH 3 PbI 3 interface.,Phys. status solidi - Rapid Res. Lett., 2014, 08, 763–766.
  • [28] Chen, Q., Zhou, H., Song, T.-B., Luo, S., Hong, Z., Duan, H.-S., etal., Controllable Self-Induced Passivation of Hybrid Lead IodidePerovskites toward High Performance Solar Cells., Nano Lett.,2014, 14, 4158–4163.[Crossref]
  • [29] Ahmad, S., Kanaujia, P.K., Niu, W., Baumberg, J.J., VijayaPrakash, G., In situ intercalation dynamics in inorganic-organiclayered perovskite thin films., ACS Appl. Mater. Interfaces,2014, 6, 10238–10247.[Crossref]
  • [30] Dwivedi, V.K., Vijaya Prakash, G., Fabrication androom-temperature exciton photoluminescence stability studiesof inorganic–organic hybrid (C12H25NH3)2SnI4 thin films.,Solid State Sci., 2014, 27, 60–64.
  • [31] Cheng, Z., Lin, J., Layered organic–inorganic hybridperovskites: structure, optical properties, film preparation,patterning and templating engineering., CrystEngComm, 2010,12, 2646–2662.[Crossref]
  • [32] Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., vanSchilfgaarde, M., Walsh, A., Atomistic origins ofhigh-performance in hybrid halide perovskite solar cells., NanoLett., 2014, 14, 2584–2590.[Crossref]
  • [33] Tan, K.W., Moore, D.T., Saliba, M., Sai, H., Estroff, L. a.,Hanrath, T., et al., Thermally induced structural evolution andperformance of mesoporous block copolymer-directed aluminaperovskite solar cells., ACS Nano, 2014, 8, 4730–4739.[Crossref]
  • [34] Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A.K., Bin, L., etal., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.,J. Am. Chem. Soc., 2012, 134, 17396–17399.
  • [35] Metzner, H., Hahn, T., Gossla, M., Conrad, J., Bremer, J.-H.,Rutherford backscattering spectroscopy of rough films:Experimental aspects., Nucl. Instruments Methods Phys. Res.Sect. B Beam Interact. with Mater. Atoms, 1998, 134, 249–261.
  • [36] Mayer, M., Toussaint, U. Von, Dewalque, J., Dubreuil, O.,Henrist, C., Cloots, R., et al., Nuclear Instruments and Methodsin Physics Research B Rutherford backscattering analysis ofporous thin TiO 2 films., Nucl. Inst. Methods Phys. Res. B, 2012,273, 83–87.
  • [37] Lund, J., Shah, K., Squillante, M., Properties of lead iodidesemiconductor radiation detectors., Nucl. Instruments MethodsPhys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.,1989, 283, 299–302.
  • [38] Kulkarni, S.A., Baikie, T., Boix, P.P., Yantara, N., Mathews, N.,Mhaisalkar, S., Band-gap tuning of lead halide perovskitesusing a sequential deposition process., J. Mater. Chem. A,2014, 2, 9221–9225.[Crossref]
  • [39] Yella, A., Heiniger, L.-P., Gao, P., Nazeeruddin, M.K., Grätzel,M., Nanocrystalline rutile electron extraction layer enableslow-temperature solution processed perovskite photovoltaicswith 13.7% efficiency., Nano Lett., 2014, 14, 2591–2596.[Crossref]
  • [40] Li, N., Dong, H., Dong, H., Li, J., Li, W., Niu, G., et al.,Multifunctional perovskite capping layers in hybrid solar cells.,J. Mater. Chem. A, 2014, 2, 14973–14978.[Crossref]
  • [41] Schiwietz, G., Czerski, K., Roth, M., Staufenbiel, F., Grande,P.L., Femtosecond dynamics – snapshots of the early ion-trackevolution., Nucl. Instruments Methods Phys. Res. Sect. B BeamInteract. with Mater. Atoms, 2004, 226, 683–704.
  • [42] Murat, M., Akkerman, A., Barak, J., Ion track structure anddynamics in SiO2., 9th Eur. Conf. Radiat. Its Eff. ComponentsSyst. (10-14 Sept. 2007, Deauville, Fr), IEEE, 2007, 1–9.
  • [43] Balanzat, E., Betz, N., Bouffard, S., Swift heavy ionmodification of polymers., Nucl. Instruments Methods Phys.Res. Sect. B Beam Interact. with Mater. Atoms, 1995, 105,46–54.
  • [44] Ackermann, J., Angert, N., Neumann, R., Trautmann, C.,Dischner, M., Hagen, T., et al., Ion track diameters in micastudied with scanning force microscopy., Nucl. InstrumentsMethods Phys. Res. Sect. B Beam Interact. with Mater. Atoms,1996, 107, 181–184.
  • [45] Ziegler, J.F., Ziegler, M.D., Biersack, J.P., SRIM – The stoppingand range of ions in matter (2010)., Nucl. Instruments MethodsPhys. Res. Sect. B Beam Interact. with Mater. Atoms, 2010, 268,1818–1823.
  • [46] Jäger, W., Roth, J., Microstructure of Ni and stainless steel aftermultiple energy He and D implantation., J. Nucl. Mater., 1980,94, 756–766.[Crossref]
  • [47] Kim, H.-S., Im, S.H., Park, N.-G., Organolead Halide Perovskite:New Horizons in Solar Cell Research., J. Phys. Chem. C, 2014,118, 5615–5625.[Crossref]
  • [48] Juma, A.O., Pistor, P., Fengler, S., Dittrich, T., Wendler,E., Copper diffusion in thin In2S3 layers investigated byRutherford Backscattering Spectroscopy., Thin Solid Films,2012, 520, 6740–6743.
  • [49] SATO, H., YUI, M., YOSHIKAWA, H., Ionic Diffusion Coefficientsof Cs +, Pb 2+, Sm 3+, Ni 2+, SeO 2- 4 and TcO − 4 in Free WaterDetermined from Conductivity Measurements., J. Nucl. Sci.Technol., 1996, 33, 950–955.[Crossref]
  • [50] Cherniak, D., Watson, E., Pb diffusion in zircon., Chem. Geol.,2001, 172, 5–24.
  • [51] Cherniak, D., Lanford, W., Ryerson, F., Lead diffusion inapatite and zircon using ion implantation and RutherfordBackscattering techniques., Geochim. Cosmochim. Acta, 1991,55, 1663–1673.[Crossref]
  • [52] Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., et al.,Efficient, high yield perovskite photovoltaic devices grown byinterdiffusion of solution-processed precursor stacking layers.,Energy Environ. Sci., 2014, 7, 2619–2623.[Crossref]
  • [53] Otte, K., Makhova, L., Braun, A., Konovalov, I., FlexibleCu(In,Ga)Se2 thin-film solar cells for space application., ThinSolid Films, 2006, 511-512, 613–622.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.