PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 1 | 1 |
Tytuł artykułu

Hybrid Materials – Past, Present and Future.

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hybrid materials represent one of the most growing new material classes at the edge of technological innovations. Unique possibilities to create novel material properties by synergetic combination of inorganic and organic components on the molecular scale makes this materials class interesting for application-oriented research of chemists, physicists, and materials scientists. The modular approach for combination of properties by the selection of the best suited components opens new options for the generation of materials that are able to solve many technological problems. This review will show in selected examples how science and technological driven approaches can help to design better materials for future applications.
Wydawca

Czasopismo
Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
wydano
2014-01-01
online
2014-04-09
Twórcy
  • Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany and Saarland University and Inorganic Solid State Chemistry, Am Markt Zeile 3, 66125 Saarbrücken, Germany
Bibliografia
  • [1] Van, O.H., Maya blue: A clay-organic pigment? Science 1966, 154, 645-646.
  • [2] Jose-Yacaman, M.; Rendon, L.; Arenas, J.; Puche, M.C.S., Maya blue paint: An ancient nanostructured material. Science 1996, 273, 223-225.
  • [3] Gomez-Romero, P.; Sanchez, C., Hybrid materials. Functional properties. From maya blue to 21st century materials. New J. Chem. 2005, 29, 57-58.
  • [4] Ashby, M.F.; Brechet, Y.J.M., Designing hybrid materials. Acta Mater. 2003, 51, 5801-5821.[Crossref]
  • [5] Aleman, J.; Chadwick, A.V.; He, J.; Hess, M.; Horie, K.; Jones, R.G.; Kratochvil, P.; Meisel, I.; Mita, I.; Moad, G., et al., Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials. Pure Appl. Chem. 2007, 79, 1801-1829.
  • [6] Kickelbick, G. In Introduction to hybrid materials, 2007; Wiley-VCH: pp 1-48.
  • [7] Scifinder, version 2014; 2014 American Chemical Society 2014.
  • [8] Ahmad, Z.; Mark, J.E., Biomimetic materials. Recent developments in organic-inorganic hybrids. Mater. Sci. Eng., C 1998, C6, 183-196.
  • [9] Currie, H.A.; Patwardhan, S.V.; Perry, C.C.; Roach, P.; Shirtcliffe, N.J. In Natural and artificial hybrid biomaterials, 2007; Wiley-VCH: pp 255-299.
  • [10] Bonderer, L.J.; Studart, A.R.; Gauckler, L.J., Bioinspired design and assembly of platelet reinforced polymer films. Science 2008, 319, 1069-1073.
  • [11] Nalwa, H.S.; Editor, Handbook of organic-inorganic hybrid materials and nanocomposites. American Scientific Publishers: 2003; p 382 pp.
  • [12] Comez-Romero, P.; Sanchez, C.; Editors, Functional hybrid materials. Wiley-VCH: 2004; p 417 pp.
  • [13] Kickelbick, G.; Editor, Hybrid materials: Synthesis, characterization, and applications. Wiley-VCH: 2007; p 498 pp.
  • [14] Sanchez, C., State of the art developments in functional hybrid materials. J. Mater. Chem. 2005, 15, 3557-3558.
  • [15] Sanchez, C.; Shea, K.J.; Kitagawa, S., Recent progress in hybrid materials science. Chem. Soc. Rev. 2011, 40, 471-472.[Crossref]
  • [16] Chujo, Y., Organic-inorganic hybrid materials. Curr. Opin. Solid State Mater. Sci. 1996, 1, 806-811.
  • [17] Gomez-Romero, P., Hybrid organic-inorganic materials-in search of synergic activity. Adv. Mater. 2001, 13, 163-174. 18] Sanchez, C.; Julian, B.; Belleville, P.; Popall, M., Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559-3592.
  • [19] Schottner, G., Hybrid sol-gel-derived polymers: Applications of multifunctional materials. Chem. Mater. 2001, 13, 3422-3435.[Crossref]
  • [20] Schubert, U., Cluster-based inorganic-organic hybrid materials. Chem. Soc. Rev. 2011, 40, 575-582.[Crossref]
  • [21] Sharp, K.G., Inorganic/organic hybrid materials. Adv. Mater. 1998, 10, 1243-1248.[Crossref]
  • [22] Wen, J.; Wilkes, G.L., Organic/inorganic hybrid network materials by the sol-gel approach. Chem. Mater. 1996, 8, 1667-1681.[Crossref]
  • [23] Huang, H.H.; Orler, B.; Wilkes, G.L., Ceramers: Hybrid materials incorporating polymeric/oligomeric species with inorganic glasses by a sol-gel process. 2. Effect of acid content on the final properties. Polym. Bull. 1985, 14, 557-564.
  • [24] Schmidt, H., Chemistry of material preparation by the sol-gel process. J. Non-Cryst. Solids 1988, 100, 51-64.
  • [25] Hench, L.L.; West, J.K., The sol-gel process. Chem. Rev. 1990, 90, 33-72.[Crossref]
  • [26] Brinker, C.; Scherer, G., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic: 1990; p No pp. given.
  • [27] Brinker, C.J.; Hurd, A.J.; Frye, G.C.; Ward, K.J.; Ashley, C.S., Sol-gel thin film formation. J. Non-Cryst. Solids 1990, 121, 294-302.
  • [28] Hüsing, N.; Schubert, U., Aerogels - airy materials: Chemistry, structure, and properties. Angew. Chem., Int. Ed. 1998, 37, 22-45.[Crossref]
  • [29] Pagliaro, M.; Ciriminna, R.; Palmisano, G., The chemical effects of molecular sol-gel entrapment. Chem. Soc. Rev. 2007, 36, 932-940.[Crossref]
  • [30] Blum, J.; Avnir, D.; Schumann, H., Sol-gel encapsulated transition-metal catalysts. CHEMTECH 1999, 29, 32-38.
  • [31] MacCraith, B.D.; McDonagh, C.M.; O’Keeffe, G.; McEvoy, A.K.; Butler, T.; Sheridan, F.R., Sol-gel coatings for optical chemical sensors and biosensors. Sens. Actuators, B 1995, 29, 51-57.
  • [32] McDonagh, C.; MacCraith, B.D.; McEvoy, A.K., Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase. Anal. Chem. 1998, 70, 45-50.[Crossref]
  • [33] Dong, S.; Luo, M.; Peng, G.; Cheng, W., Broad range ph sensor based on sol-gel entrapped indicators on fiber optic. Sens. Actuators, B 2008, 129, 94-98.
  • [34] Avnir, D.; Braun, S.; Lev, O.; Ottolenghi, M., Enzymes and other proteins entrapped in sol-gel materials. Chem. Mater. 1994, 6, 1605-1614.[Crossref]
  • [35] Wolfbeis, O.S.; Oehme, I.; Papkovskaya, N.; Klimant, I., Sol-gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background. Biosens. Bioelectron. 2000, 15, 69-76.[Crossref]
  • [36] Franville, A.-C.; Zambon, D.; Mahiou, R.; Troin, Y., Luminescence behavior of sol-gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes. Chem. Mater. 2000, 12, 428-435.[Crossref]
  • [37] Jeng, R.-J.; Chang, C.-C.; Chen, C.-P.; Chen, C.-T.; Su, W.-C., Thermally stable crosslinked nlo materials based on maleimides. Polymer 2002, 44, 143-155.
  • [38] Schneider, M.; Müllen, K., Hybrid materials doped with covalently bound perylene dyes through the sol-gel process. Chem. Mater. 2000, 12, 352-362.[Crossref]
  • [39] Nakanishi, K.; Minakuchi, H.; Soga, N.; Tanaka, N., Structure design of double-pore silica and its application to hplc. J. Sol-Gel Sci. Technol. 1998, 13, 163-169.
  • [40] Cabrera, K.; Lubda, D.; Eggenweiler, H.-M.; Minakuchi, H.; Nakanishi, K., A new monolithic-type hplc column for fast separations. J. High Resolut. Chromatogr. 2000, 23, 93-99.
  • [41] Wu, M.; Wu, R.a.; Wang, F.; Ren, L.; Dong, J.; Liu, Z.; Zou, H., “One-pot” process for fabrication of organic-silica hybrid monolithic capillary columns using organic monomer and alkoxysilane. Anal. Chem. 2009, 81, 3529-3536.[Crossref]
  • [42] Amberg-Schwab, S.; Hoffmann, M.; Bader, H.; Gessler, M., Inorganic-organic polymers with barrier properties for water vapor, oxygen and flavors. J. Sol-Gel Sci. Technol. 1998, 13, 141-146.
  • [43] Haas, K.H.; Amberg-Schwab, S.; Rose, K., Functionalized coating materials based on inorganic-organic polymers. Thin Solid Films 1999, 351, 198-203.
  • [44] Hofacker, S.; Mechtel, M.; Mager, M.; Kraus, H., Sol-gel: A new tool for coatings chemistry. Prog. Org. Coat. 2002, 45, 159-164.[Crossref]
  • [45] Wang, B.; Wilkes, G.L., Novel hybrid inorganic-organic abrasion-resistant coatings prepared by a sol-gel process. J.Macromol. Sci., Pure Appl. Chem. 1994, A31, 249-260.
  • [46] Sanchez, C.; Livage, J., Sol-gel chemistry from metal alkoxide precursors. New J. Chem. 1990, 14, 513-521.
  • [47] Schubert, U.; Huesing, N.; Lorenz, A., Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides. Chem. Mater. 1995, 7, 2010-2027.[Crossref]
  • [48] Mutin, P.H.; Guerrero, G.; Vioux, A., Hybrid materials from organophosphorus coupling molecules. J. Mater. Chem. 2005, 15, 3761-3768.[Crossref]
  • [49] Schubert, U., Silica-based and transition metal-based inorganic-organic hybrid materials - a comparison. J. Sol-Gel Sci. Technol. 2003, 26, 47-55.
  • [50] Ivanovici, S.; Kickelbick, G., Synthesis of hybrid polysiloxane- MO2 (M = Si, Ti, Zr) nanoparticles through a sol-gel route. J.Sol-Gel Sci. Technol. 2008, 46, 273-280.
  • [51] Kickelbick, G.; Holzinger, D., Preparation of particulate core-shell metal oxide-polymer nanocomposites by a sol-gel approach. Mater. Res. Soc. Symp. Proc. 2005, 847, 521-531.
  • [52] Lee, L.-H.; Chen, W.-C., High-refractive-index thin films prepared from trialkoxysilane-capped poly(methyl methacrylate)-titania materials. Chem. Mater. 2001, 13, 1137-1142.[Crossref]
  • [53] Su, H.-W.; Chen, W.-C., High refractive index polyimidenanocrystalline- titania hybrid optical materials. J. Mater. Chem. 2008, 18, 1139-1145.[Crossref]
  • [54] Innocenzi, P.; Martucci, A.; Guglielmi, M.; Armelao, L.; Pelli, S.; Righini, G.C.; Battaglin, G.C., Optical and surface properties of inorganic and hybrid organic-inorganic silica-titania sol-gel planar waveguides. J. Non-Cryst. Solids 1999, 259, 182-190.
  • [55] Nassar, E.J.; Goncalves, R.R.; Ferrari, M.; Messaddeq, Y.; Ribeiro, S.J.L., Titania-based organic-inorganic hybrid planar waveguides. J. Alloys Compd. 2002, 344, 221-225.
  • [56] Lin, C.-L.; Yeh, M.-Y.; Chen, C.-H.; Sudhakar, S.; Luo, S.-J.; Hsu, Y.-C.; Huang, C.-Y.; Ho, K.-C.; Luh, T.-Y., Silica-titaniabased organic-inorganic hybrid materials for photovoltaic applications. Chem. Mater. 2006, 18, 4157-4162.[Crossref]
  • [57] Kickelbick, G., Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog.Polym. Sci. 2002, 28, 83-114.
  • [58] Ogoshi, T.; Chujo, Y., Organic-inorganic polymer hybrids prepared by the sol-gel method. Compos. Interfaces 2005, 11, 539-566.[Crossref]
  • [59] Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; et, a., A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834-10843.[Crossref]
  • [60] Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710-712.
  • [61] Ciesla, U.; Schuth, F., Ordered mesoporous materials.Microporous Mesoporous Mater. 1999, 27, 131-149.
  • [62] Ying, J.Y.; Mehnert, C.P.; Wong, M.S., Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem., Int. Ed. 1999, 38, 56-77.[Crossref]
  • [63] Corma, A., From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373-2419.[Crossref]
  • [64] Taguchi, A.; Schueth, F., Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 2004, 77, 1-45.
  • [65] Luque, R.; Balu, A.M.; Campelo, J.M.; Gracia, M.D.; Losada, E.; Pineda, A.; Romero, A.A.; Serrano-Ruiz, J.C., Catalytic applications of mesoporous silica-based materials. Catalysis 2012, 24, 253-280.[Crossref]
  • [66] Guliants, V.V.; Carreon, M.A.; Lin, Y.S., Ordered mesoporous and macroporous inorganic films and membranes. J. Membr.Sci. 2004, 235, 53-72.
  • [67] Vallet-Regi, M.; Balas, F.; Arcos, D., Mesoporous materials for drug delivery. Angew. Chem., Int. Ed. 2007, 46, 7548-7558.[Crossref]
  • [68] Kickelbick, G., Hybrid inorganic-organic mesoporous materials. Angew. Chem., Int. Ed. 2004, 43, 3102-3104.[Crossref]
  • [69] Doadrio, J.C.; Sousa, E.M.B.; Izquierdo-Barba, I.; Doadrio, A.L.; Perez-Pariente, J.; Vallet-Regi, M., Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. J. Mater. Chem. 2006, 16, 462-466.[Crossref]
  • [70] Feng, X.; Fryxell, G.E.; Wang, L.Q.; Kim, A.Y.; Liu, J.; Kemner, K.M., Functionalized monolayers on ordered mesoporous supports. Science 1997, 276, 923-926.
  • [71] Burkett, S.L.; Sims, S.D.; Mann, S., Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem. Commun. 1996, 1367-1368.[Crossref]
  • [72] Margolese, D.; Melero, J.A.; Christiansen, S.C.; Chmelka, B.F.; Stucky, G.D., Direct syntheses of ordered sba-15 mesoporous silica containing sulfonic acid groups. Chem. Mater. 2000, 12, 2448-2459.[Crossref]
  • [73] Lim, M.H.; Blanford, C.F.; Stein, A., Synthesis and characterization of a reactive vinyl-functionalized mcm-41: Probing the internal pore structure by a bromination reaction. J. Am.Chem. Soc. 1997, 119, 4090-4091.
  • [74] Asefa, T.; MacLachlan, M.J.; Coombs, N.; Ozin, G.A., Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 1999, 402, 867-871.
  • [75] Hatton, B.; Landskron, K.; Whitnall, W.; Perovic, D.; Ozin, G.A., Past, present, and future of periodic mesoporous organosilicas-the pmos. Acc. Chem. Res. 2005, 38, 305-312.[Crossref]
  • [76] Van Der Voort, P.; Esquivel, D.; De Canck, E.; Goethals, F.; Van Driessche, I.; Romero-Salguero, F.J., Periodic mesoporous organosilicas: From simple to complex bridges; a comprehensive overview of functions, morphologies and applications.Chem. Soc. Rev. 2013, 42, 3913-3955.
  • [77] Rowsell, J.L.C.; Yaghi, O.M., Metal-organic frameworks: A new class of porous materials. Microporous Mesoporous Mater. 2004, 73, 3-14.
  • [78] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M., Systematic design of pore size and functionality in isoreticular mofs and their application in methane storage. Science 2002, 295, 469-472.
  • [79] Janiak, C.; Vieth, J.K., Mofs, mils and more: Concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 2010, 34, 2366-2388.
  • [80] Rosi, N.L.; Eckert, J.; Eddaoudi, M.; Vodak, D.T.; Kim, J.; O’Keeffe, M.; Yaghi, O.M., Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300, 1127-1129.
  • [81] Rowsell, J.L.C.; Millward, A.R.; Park, K.S.; Yaghi, O.M., Hydrogen sorption in functionalized metal-organic frameworks.J. Am. Chem. Soc. 2004, 126, 5666-5667.
  • [82] Li, J.-R.; Kuppler, R.J.; Zhou, H.-C., Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477-1504.[Crossref]
  • [83] Long, J.R.; Yaghi, O.M., The pervasive chemistry of metalorganic frameworks. Chem. Soc. Rev. 2009, 38, 1213-1214.[Crossref]
  • [84] Suh, M.P.; Park, H.J.; Prasad, T.K.; Lim, D.-W., Hydrogen storage in metal-organic frameworks. Chem. Rev. 2012, 112, 782-835.[Crossref]
  • [85] Wu, H.; Gong, Q.; Olson, D.H.; Li, J., Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem. Rev. 2012, 112, 836-868.[Crossref]
  • [86] Zhou, H.-C.; Long, J.R.; Yaghi, O.M., Introduction to metalorganic frameworks. Chem. Rev. 2012, 112, 673-674.[Crossref]
  • [87] Kaskel, S., Pores per modules. Nachr. Chem. 2005, 53, 394-399.[Crossref]
  • [88] Feher, F.J.; Terroba, R.; Jin, R.-Z.; Wyndham, K.D.; Lucke, S.; Brutchey, R.; Nguyen, F., Silsesquioxanes and spherosilicates as precursors to hybrid inorganic/organic materials. Polym.Mater. Sci. Eng. 2000, 82, 301-302.
  • [89] Ro, H.W.; Soles, C.L., Silsesquioxanes in nanoscale patterning applications. Mater. Today 2011, 14, 20-33.[Crossref]
  • [90] Kamino, B.A.; Bender, T.P., The use of siloxanes, silsesquioxanes, and silicones in organic semiconducting materials.Chem. Soc. Rev. 2013, 42, 5119-5130.[Crossref]
  • [91] Pielichowski, K.; Njuguna, J.; Janowski, B.; Pielichowski, J., Polyhedral oligomeric silsesquioxanes (poss)-containing nanohybrid polymers. Adv. Polym. Sci. 2006, 201, 225-296.
  • [92] Cordes, D.B.; Lickiss, P.D.; Rataboul, F., Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem.Rev. 2010, 110, 2081-2173.[Crossref]
  • [93] Hartmann-Thompson, C., Polyhedral oligomeric silsesquioxanes in electronics and energy applications. Adv. Silicon Sci. 2011, 3, 247-325.
  • [94] Markovic, E.; Constantopolous, K.; Matisons, J.G., Polyhedral oligomeric silsesquioxanes: From early and strategic development through to materials application. Adv. Silicon Sci. 2011, 3, 1-46.
  • [95] Xie, P.; Zhang, R., Functionalization and application of ladder-like polysilsesquioxanes. Polym. Adv. Technol. 1997, 8, 649-656. [Crossref]
  • [96] Zhou, Q.; Yan, S.; Han, C.C.; Xie, P.; Zhang, R., Promising functional materials based on ladder polysiloxanes. Adv. Mater. 2008, 20, 2970-2976.[Crossref]
  • [97] Sanchez, C.; de, S.-I.G.J.; Ribot, F.; Lalot, T.; Mayer, C.R.; Cabuil, V., Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chem. Mater. 2001, 13, 3061-3083.[Crossref]
  • [98] Schubert, U., Organofunctional metal oxide clusters as building blocks for inorganic-organic hybrid materials. J. Sol-Gel Sci.Technol. 2004, 31, 19-24.
  • [99] Mackenzie, J.D.; Bescher, E., Some factors governing the coating of organic polymers by sol-gel derived hybrid materials.J. Sol-Gel Sci. Technol. 2003, 27, 7-14.
  • [100] Toselli, M.; Marini, M.; Fabbri, P.; Messori, M.; Pilati, F., Sol-gel derived hybrid coatings for the improvement of scratch resistance of polyethylene. J. Sol-Gel Sci. Technol. 2007, 43, 73-83.
  • [101] Turri, S.; Torlaj, L.; Piccinini, F.; Levi, M., Abrasion and nanoscratch in nanostructured epoxy coatings. J. Appl. Polym.Sci. 2010, 118, 1720-1727.
  • [102] Wu, G.; Wang, J.; Shen, J.; Yang, T.; Zhang, Q.; Zhou, B.; Deng, Z.; Bin, F.; Zhou, D.; Zhang, F., Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment. J. Non-Cryst. Solids 2000, 275, 169-174.
  • [103] Kim, W.J.; Kim, T.Y.; Park, C.S.; Kim, J.E.; Lee, T.H.; Yoon, H.G.; Suh, K.S., Anti-reflection and anti-static (ar/as) coatings made by TiO2 sol-gel process with poly(3,4-ethylenedioxy thiophene). e-Polym. 2008, No pp. given.
  • [104] Textor, T.; Mahltig, B., A sol-gel based surface treatment for preparation of water repellent antistatic textiles. Appl. Surf.Sci. 2010, 256, 1668-1674.
  • [105] Wouters, M.E.L.; Wolfs, D.P.; van, d.L.M.C.; Hovens, J.H.P.; Tinnemans, A.H.A., Transparent uv curable antistatic hybrid coatings on polycarbonate prepared by the sol-gel method.Prog. Org. Coat. 2004, 51, 312-320.[Crossref]
  • [106] Chiu, W.-M.; Zhang, Y.-S.; Tsai, P.-A.; Wu, J.-H., Characterization of antireflective coatings on poly(methyl methacrylate) substrate by different process parameters. J. Appl. Polym. Sci. 2013, 129, 2411-2417.
  • [107] Purcar, V.; Stamatin, I.; Cinteza, O.; Petcu, C.; Raditoiu, V.; Ghiurea, M.; Miclaus, T.; Andronie, A., Fabrication of hydrophobic and antireflective coatings based on hybrid silica films by sol-gel process. Surf. Coat. Technol. 2012, 206, 4449-4454.
  • [108] Zhang, X.-X.; Ye, H.-P.; Xiao, B.; Yan, L.-H.; Lv, H.-B.; Jiang, B., Sol-gel preparation of pdms/silica hybrid antireflective coatings with controlled thickness and durable antireflective performance. J. Phys. Chem. C 2010, 114, 19979-19983.[Crossref]
  • [109] Amberg-Schwab, S.; Katschorek, H.; Weber, U.; Hoffmann, M.; Burger, A., Barrier properties of inorganic-organic polymers: Influence of starting compounds, curing conditions and storage-scaling-up to industrial application. J. Sol-Gel Sci.Technol. 2000, 19, 125-129.
  • [110] Amberg-Schwab, S.; Weber, U.; Burger, A.; Nique, S.; Xalter, R., Development of passive and active barrier coatings on the basis of inorganic-organic polymers. Monatsh. Chem. 2006, 137, 657-666.
  • [111] Chou, T.P.; Chandrasekaran, C.; Cao, G.Z., Sol-gel-derived hybrid coatings for corrosion protection. J. Sol-Gel Sci. Technol. 2003, 26, 321-327.
  • [112] Chou, T.P.; Chandrasekaran, C.; Limmer, S.J.; Seraji, S.; Wu, Y.; Forbess, M.J.; Nguyen, C.; Cao, G.Z., Organic-inorganic hybrid coatings for corrosion protection. J. Non-Cryst. Solids 2001, 290, 153-162.
  • [113] Khramov, A.N.; Balbyshev, V.N.; Kasten, L.S.; Mantz, R.A., Sol-gel coatings with phosphonate functionalities for surface modification of magnesium alloys. Thin Solid Films 2006, 514, 174-181.
  • [114] Khramov, A.N.; Voevodin, N.N.; Balbyshev, V.N.; Mantz, R.A., Sol-gel-derived corrosion-protective coatings with controllable release of incorporated organic corrosion inhibitors. Thin Solid Films 2005, 483, 191-196.
  • [115] Zandi-Zand, R.; Ershad-Langroudi, A.; Rahimi, A., Silica based organic-inorganic hybrid nanocomposite coatings for corrosion protection. Prog. Org. Coat. 2005, 53, 286-291.[Crossref]
  • [116] Houbertz, R.; Domann, G.; Cronauer, C.; Schmitt, A.; Martin, H.; Park, J.U.; Frohlich, L.; Buestrich, R.; Popall, M.; Streppel, U., et al., Inorganic-organic hybrid materials for application in optical devices. Thin Solid Films 2003, 442, 194-200.
  • [117] Wang, B.; Wilkes, G.L.; Hedrick, J.C.; Liptak, S.C.; McGrath, J.E., New high-refractive-index organic/inorganic hybrid materials from sol-gel processing. Macromolecules 1991, 24, 3449-3450.[Crossref]
  • [118] Levy, D., Photochromic sol-gel materials. Chem. Mater. 1997, 9, 2666-2670.[Crossref]
  • [119] Zhang, H.; Fallahi, M., Electro-optic waveguide based on hybrid sol-gel doped with organic chromophore. Opt. Commun. 2005, 248, 415-418.
  • [120] Innocenzi, P.; Lebeau, B., Organic-inorganic hybrid materials for non-linear optics. J. Mater. Chem. 2005, 15, 3821-3831.[Crossref]
  • [121] Wang, J.-J.; Wang, Y.-Q.; Cao, F.-F.; Guo, Y.-G.; Wan, L.-J., Synthesis of monodispersed wurtzite structure CuInSe2 nanocrystals and their application in high-performance
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_hyma-2014-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.