Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 15 | 1 | 51-55
Tytuł artykułu

Kinematic regulation of time and frequency domain components of accelerations measured at the tibia during heel-toe running

Treść / Zawartość
Warianty tytułu
Języki publikacji
Purpose. The transmission of tibial accelerations through the musculoskeletal system may contribute to the aetiology of injuries. Therefore, determining the mechanisms that regulate impact accelerations may have potential clinical significance. This study aimed to determine the influence of lower extremity kinematics on the regulation of both time and frequency domain characteristics of tibial accelerations during running. Methods. Forty participants ran at 4.0 m · s-1 ± 5%. Three-dimensional joint kinematics from the hip, knee and ankle were measured using an eight-camera motion analysis system operating at 250 Hz. Regression analyses treating time and frequency domain tibial acceleration parameters as criterion variables were used to identify lower extremity parameters associated with the passive regulation of impact accelerations. Results. The overall regression model yielded an adj. R2 = 0.13, p 0.01. Knee flexion velocity at footstrike was identified as a significant regulator of tibial accelerations in the time domain. No kinematic variables were identified as significantly related to the frequency domain properties of the signal. Conclusions. The findings of the current investigation suggest that sagittal plane knee flexion velocity at footstrike can regulate the magnitude of impact loading linked to the development of chronic injuries.
Słowa kluczowe

Opis fizyczny
  • Division of Sport Exercise and Nutritional Sciences, University of Central Lancashire, Preston, United Kingdom,
  • School of Psychology, University of Central Lancashire, Preston, United Kingdom
  • Division of Sport Exercise and Nutritional Sciences, University of Central Lancashire, Preston, United Kingdom
  • 1. Curfman G.D., The health benefits of exercise. N Engl J Med, 1993,328(8), 574-576, doi: 10.1056/NEJM199302253280810.[Crossref]
  • 2. van Mechelen W., Running injuries. A review of the epidemiological literature. Sports Med, 1992, 14 (5), 320-335, doi: 10.2165/00007256-199214050-00004.[Crossref]
  • 3. Hreljac A., Marshall R.N., Hume P.A., Evaluation of lower extremity overuse injury potential in runners. Med Sci Sport Exerc, 2000, 32 (9), 1635-1641.[Crossref]
  • 4. Sinclair J., Bottoms L., Taylor K., Greenhalgh A., Tibial shock measured during the fencing lunge: the influence of footwear. Sports Biomech, 2010, 9 (2), 65-71, doi: 10.1080/14763141.2010.491161.[WoS][PubMed][Crossref]
  • 5. Hennig E.M., Lafortune M.A., Relationships between ground reaction force and tibial bone acceleration parameters. Int J Sports Biomech, 1991, 7 (3), 303-309.
  • 6. Kim W., Voloshin A.S., Johnson S.H., Modeling of heel strike transients during running. Hum Mov Sci, 1994, 13 (2), 221-244, doi: 10.1016/0167-9457(94)90038-8.[Crossref]
  • 7. Lafortune M.A., Hennig E.M., Contribution of angular motion and gravity to tibial acceleration. Med Sci Sports Exerc, 1991, 23 (3), 360-363, doi: 10.1016/0021-9290(89) 90339-4.[PubMed][Crossref]
  • 8. Lake M.J., Greenhalgh A., Impact shock measurements during running: Correction for angular motion of the shank is necessary. In: Proceedings of the 7th Symposium on Footwear Biomechanics. July 27-29 Cleveland, USA 2005. Available from: URL: http://,MJ1.Impactshock.pdf.
  • 9. Sinclair J., Greenhalgh A., Edmundson C.J., Brooks D., Hobbs S.J., Gender differences in the kinetics and kinematics of distance running: implications for footwear design. Int J Sports Sci Eng, 2012, 6 (2), 118-128.
  • 10. Sinclair J., Greenhalgh A., Brooks D., Edmundson C.J., Hobbs S.J., The influence of barefoot and barefoot-in spired footwear on the kinetics and kinematics of running in comparison to conventional running shoes. Footwear Sci, 2013,5(1), 45-53, doi: 10.1080/19424280.2012.693543.[Crossref]
  • 11. Sinclair J., Taylor P.J., Edmundson C.J., Brooks D., Hobbs S.J., The influence of footwear kinetic, kinematic and electromographical parameters on the energy requirements of steady state running. Mov Sport Sci/Sci Mot, 2013, 80, 39-49, doi: 10.1051/sm/2012025.[Crossref]
  • 12. Whittle M.W., Generation and attenuation of transient forces beneath the foot: a review. Gait Posture, 1999, 10, (3) 264-275, doi: 10.1016/S0966-6362(99)00041-7.[Crossref]
  • 13. Wright I.C., Neptune R.R., van den Bogert A.J., Nigg B.M., Passive regulation of impact forces in heel-toe running. Clin Biomech, 1998, 13 (7), 521-531, doi: 10.1016/S0268-0033(98)00025-4.[Crossref]
  • 14. Denoth J., Load on the locomotor system and modelling. In: Nigg B.M. (ed.), Biomechanics of running shoes. Human Kinetics, Champaign 1986, 63-116.
  • 15. Bobbert M.F., Yeadon M.R., Nigg B.M., Mechanical analysis of the landing phase in heel-toe running. J Biomech, 1992, 25 (3), 223-234, doi: 10.1016/0021-9290(92)90022-S.[Crossref]
  • 16. Lafortune M.A., Hening E.M., Lake M.J., Dominant role of interface over knee angle for cushioning impact loading and regulating initial leg stiffness. J Biomech, 1996, 29 (12), 1523-1529, doi: 10.1016/S0021-9290(96)80003-0.[Crossref]
  • 17. Nigg B.M., Morlock M., The influence of lateral heel flare of running shoes on pronation and impact forces. Med Sci Sports Exerc, 1987, 19 (3), 294-302, doi: 10.1249/00005768-198706000-00017.[Crossref]
  • 18. Stacoff A., Denoth J., Kaelin X., Stuessi E., Running injuries and shoe construction: some possible relationships. Int J Sport Biomech, 1988, 4 (4), 342-357.
  • 19. Erdfelder E., Faul F., Buchner A., GPOWER: A general power analysis program. Behav Res Methods Instrum Comput, 1996, 28 (1), 1-11, doi: 10.3758/BF03203630.[Crossref]
  • 20. Sinclair J., Edmundson C.J., Brooks D., Hobbs S.J., Evaluation of kinematic methods of identifying gait events during running. Int J Sports Sci Eng, 2011, 5 (3), 188-192.
  • 21. Cappozzo A., Catani F., Della Croce U., Leardini A., Benedeti M.G., Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clin Biomech, 1995, 10 (4), 171-178, doi: 10.1016/0268-0033(95)91394-T.[Crossref]
  • 22. Cappozzo A., Cappello A., Croce U.D., Pensalfini F., Surface- marker cluster design criteria for 3-D bone movement reconstruction. IEEE Trans Biomed Eng, 1997, 44 (12), 1165-1174, doi: 10.1109/10.649988.[Crossref]
  • 23. Bell A.L., Brand R.A., Pedersen D.R., Prediction of hip joint centre location from external landmarks. Hum Mov Sci, 1989, 8 (1), 3-16, doi: 10.1016/0167-9457(89)90020-1.[Crossref]
  • 24. Greenhalgh A., Bottoms L., Sinclair J., Influence of surface on impact shock experienced during a fencing lunge. J Appl Biomech, 2013, 29 (4), 463-467.
  • 25. Sinclair J., Taylor P.J., Edmundson C.J., Brooks D., Hobbs S.J., Influence of the helical and six available Cardan sequences on 3-D ankle joint kinematic parameters. Sports Biomech, 2012, 11 (3), 430-437, doi: 10.1080/14763141.2012.656762.[Crossref][WoS]
  • 26. Lafortune M.A., Lake M.J., Hennig E.M., Differential shock transmission response of the human body to impact severity and lower limb posture. J Biomech, 1996, 29 (12), 1531-1537, doi: 10.1016/S0021-9290(96)80004-2.[Crossref]
  • 27. Nigg B.M., Denoth J., Neukomm P.A., Quantifying the load on the human body: problems and some possible solutions. In: Morecki A., Fidelus K., Kedzior K., Wit A. (eds.), Biomechanics VII. University Park Press, Baltimore 1981, 88-99.
  • 28. Paul I.L., Munro M.B., Abernethy P.J., Simon S.R., Radin E.L., Rose R.M., Musculo-skeletal shock absorption: Relative contribution of bone and soft tissues at various frequencies. J Biomech, 1978, 11 (5), 237-239, doi: 10.1016/0021-9290(78)90049-0.[Crossref]
  • 29. Voloshin A.S., Burger C.P., Wosk J., Arcan M., An in vivo evaluation of the leg’s shock absorbing capacity. In: Winter D.A., Norman R.W., Wells R.P., Hayes K.C., Patla A.E. (eds.), Biomechanics IX-B. Human Kinetics, Champaign 1985, 112-116.
  • 30. Nigg B.M., Wakeling J.M., Impact forces and muscle tuning: a new paradigm. Exerc Sports Sci Rev, 2001, 29 (1), 37-41, doi: 10.1097/00003677-200101000-00008.[Crossref]
  • 31. Qian S., Chen D., Joint time-frequency analysis: Methods and applications. Prentice Hall, Englewood Cliffs 1996.
  • 32. Lake M.J., Patriatti B., Signal processings approaches to evaluate the performance of shock absorbing inserts for footwear. In: Proceedings of the 4th Symposium on Footwear Biomechanics, Aug 5-7 Canmore, Canada 1999, 70-71. Available from: URL:
  • 33. Rakotomamonjy A., Barbaud M., Tronel M., Marché P., Time-frequency analysis of impact shock during running. In: Proceedings of the 3rd Symposium on Footwear, Biomechanics, Aug 21-23 Tokyo, Japan 1996, 14-15. Available from: URL:
  • 34. Hennig E.M., Gender differences for running in athletic footwear. In: Hennig E.M., Stacoff A. (eds.), Proceedings of the 5th Symposium on Footwear Biomechanics, Zurich, Switzerland 2001, 44-45. Available from: URL:
  • 35. Stefanyshyn D.J., Stergiou P., Nigg B.M., Rozitis A.I., Goepfert B., Do females require different running footwear? In: Proceedings of the 6th Symposium on Footwear Biomechanics, Queenstown, New Zealand 2003, 91-92. Available from: URL:
  • 36. Sinclair J., Taylor, P.J., Brooks D., Edmundson C.J., Hobbs S.J., Gender differences in tibiocalcaneal kinematics. J Biomech, 2012, 45 (Suppl. 1), S622. [Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.