Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 15 | 1 | 45-50
Tytuł artykułu

Effects of workload level on muscle recruitment in cycling

Treść / Zawartość
Warianty tytułu
Języki publikacji
Purpose. Despite the volume of studies addressing muscle activation during pedaling, it is unclear whether changes in workload level during cycling could dictate motor unit recruitment. The present study investigated the frequency content of lower limb muscle activation during submaximal workloads. Methods. Twelve male competitive cyclists pedaled at three workload levels: (1) maximum aerobic power output (POMAX), (2) first ventilatory threshold (POVT1), and (3) second ventilatory threshold (POVT2). Muscle activation was recorded from the right vastus medialis (VM), rectus femoris (RF), long head of biceps femoris (BF), tibialis anterior (TA), gastrocnemius medialis (GM), and soleus (SOL) muscles. Data from muscle activation were assessed using frequency band analysis. High and low frequencies and overall muscle activation were normalized to that collected at POMAX. Results. Greater overall activation was observed for VM (27%, p < 0.01, d = 1.22), RF (24%, p < 0.01, d = 0.96), BF (33%, p < 0.01, d = 1.43), GM (10%, p < 0.05, d = 0.91), and SOL (16%, p < 0.05, d = 0.81) at POVT2 than POVT1. No differences were observed in the high or low frequencies relative to overall muscle activation. Conclusions. Cyclists sustain changes at submaximal workloads via an equally distributed increase in muscle activation with no potential changes in motor unit recruitment.

Opis fizyczny
  • Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain / Applied Neuromechanics Research Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, RS, Brazil
  • Exercise Research Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil,
  • Exercise Research Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
  • Applied Neuromechanics Research Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, RS, Brazil
  • 1. Henneman E., Relation between size of neurons and their susceptibility to discharge. Science, 1957, 126 (3287), 1345-1347, doi: 10.1126/science.126.3287.1345.[Crossref]
  • 2. Milner-Brown H.S., Stein R.B., Yemm R., The orderly recruitment of human motor units during voluntary isometric contractions. J Physiol (Lond), 1973, 230 (2), 359-370.
  • 3. Duchateau J., Enoka R.M. Human motor unit recordings: origins and insight into the integrated motor system. Brain Res, 2011, 1409, 42-61, doi: 10.1016/j.brainres.2011.06.011.[Crossref][WoS]
  • 4. Hannerz J., Grimby L., Recruitment order of motor units in man: significance of pre-existing state of facilitation. J Neurol Neurosurg Psychiatry, 1973, 36 (2), 275-281, doi: 10.1136/jnnp.36.2.275.[Crossref]
  • 5. De Luca C.J., Contessa P., Hierarchical control of motor units in voluntary contractions. J Neurophysiol, 2012, 107 (1), 178-195, doi: 10.1152/jn.00961.2010.[WoS][Crossref]
  • 6. Hug F., Decherchi P., Marqueste T., Jammes Y., EMG versus oxygen uptake during cycling exercise in trained and untrained subjects. J Electromyogr Kinesiol, 2004, 14 (2), 187-195, doi: 10.1016/S1050-6411(03)00081-6.[Crossref]
  • 7. Wakeling J.M., Horn T., Neuromechanics of muscle synergies during cycling. J Neurophysiol, 2009, 101 (2), 843-854, doi: 10.1152/jn.90679.2008.[Crossref][WoS]
  • 8. Blake O.M., Wakeling J.M., Muscle coordination during an outdoor cycling time trial. Med Sci Sports Exerc, 2012, 44 (5), 939-948, doi: 10.1249/MSS.0b013e3182404eb4.[WoS][Crossref]
  • 9. Hug F., Dorel S., Electromyographic analysis of pedaling: a review. J Electromyogr Kinesiol, 2009, 19 (2), 182-198, doi: 10.1016/j.jelekin.2007.10.010.[Crossref]
  • 10. Wakeling J.M., Lee S.S.M., Arnold A.S., de Boef Miara M., Biewener A.A., A muscle’s force depends on the recruitment patterns of its fibers. Ann Biomed Eng, 2012, 40 (8), 1708-1720, doi: 10.1007/s10439-012-0531-6.[WoS][Crossref]
  • 11. Diefenthaeler F., Bini R.R., Vaz M.A., Frequency band analysis of muscle activation during cycling to exhaustion. Rev Bras Cineantropom Desempenho Hum, 2012, 14 (3), 243-253, doi: 10.5007/1980-0037.2012v14n3p243.[Crossref]
  • 12. von Tscharner V., Time-frequency and principal-component methods for the analysis of EMGs recorded during a mildly fatiguing exercise on a cycle ergometer. J Electromyogr Kinesiol, 2002, 12 (6), 479-492, doi: 10.1016/ S1050-6411(02)00005-6.[Crossref]
  • 13. Hug F., Faucher M., Kipson N., Jammes Y., EMG signs of neuromuscular fatigue related to the ventilatory threshold during cycling exercise. Clin Physiol Funct Imaging, 2003, 23 (4), 208-214, doi: 10.1046/j.1475-097X.2003.00497.x.[Crossref]
  • 14. Coyle E.F., Feltner M.E., Kautz S.A., Hamilton M.T., Montain S.J., Baylor A.M. et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc, 1991, 23 (1), 93-107, doi: 10.1249/00005768-199101000-00015.[Crossref]
  • 15. Golich D., Broker J., SRM bicycle instrumentation and the power output of elite male cyclists during the 1994 Tour Dupont. Perform Cond Cycling, 1996, 2 (2), 6-8.
  • 16. Vogt S., Schumacher Y.O., Blum A., Roecker K., Dickhuth H.-H., Schmid A. et al., Cycling power output produced during flat and mountain stages in the Giro d’Italia: A case study. J Sports Sci, 2007, 25 (12), 1299-1305, doi: 10.1080/02640410601001632.[WoS]
  • 17. Lucia A., Hoyos J., Perez M., Santalla A., Chicharro J.L., Inverse relationship between VO2max and economy/efficiency in world-class cyclists. Med Sci Sports Exerc, 2002, 34 (12), 2079-2084.
  • 18. Weston S.B., Gabbett T.J., Reproducibility of ventilation of thresholds in trained cyclists during ramp cycle exercise. J Sci Med Sport, 2001, 4 (3), 357-366, doi: 10.1016/ S1440-2440(01)80044-X.[Crossref]
  • 19. De Luca C.J., The use of surface electromyography in biomechanics. J Appl Biomech, 1997, 13 (2), 135-163.
  • 20. Hermens H.J., Freriks B., Disselhorst-Klug C., Rau G., Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol, 2000, 10 (5), 361-374, doi: 10.1016/S1050-6411(00)00027-4.[Crossref]
  • 21. Cohen J., Statistical power analysis for the behavioral sciences. Lawrence Erlbaum, New Jersey 1988.
  • 22. Soo Y., Sugi M., Yokoi H., Arai T., Du R., Ota J., Simultaneous measurement of force and muscle fatigue using frequency-band wavelet analysis. Conf Proc IEEE Eng Med Biol Soc, 2008, 5045-5048, doi: 10.1109/ IEMBS.2008.4650347.[Crossref]
  • 23. Jobson S.A., Hopker J., Arkesteijn M., Passfield L., Interand intra-session reliability of muscle activity patterns during cycling. J Electromyogr Kinesiol, 2013, 23 (1), 230-237, doi: 10.1016/j.jelekin.2012.08.013.[Crossref]
  • 24. Fregly B.J., Zajac F.E., A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling. J Biomech, 1996, 29 (1), 81-90, doi: 10.1016/0021-9290(95)00011-9.[Crossref]
  • 25. Bini R.R., Carpes F.P., Diefenthaeler F., Mota C.B., Guimaraes A.C.S., Physiological and electromyographic responses during 40-km cycling time trial: Relationship to muscle coordination and performance. J Sci Med Sport, 2008, 11 (4), 363-370, doi: 10.1016/j.jsams.2007.03.006.[WoS][Crossref]
  • 26. Hug F., Laplaud D., Savin B., Grelot L., Occurrence of electromyographic and ventilatory thresholds in professional road cyclists. Eur J Appl Physiol, 2003, 90 (5-6), 643-646, doi: 10.1007/s00421-003-0949-5.[Crossref]
  • 27. Bini R.R., Diefenthaeler F., Kinetics and kinematics analysis of incremental cycling to exhaustion. Sports Biomech, 2010,9(4), 223-235, doi: 10.1080/14763141.2010.540672.[WoS][Crossref]
  • 28. Abbiss C.R., Karagounis L.G., Laursen P.B., Peiffer J.J., Martin D.T., Hawley J.A. et al., Single-leg cycle training is superior to double-leg cycling in improving the oxidative potential and metabolic profile of trained skeletal muscle. J Appl Physiol, 2011, 110 (5), 1248-1255, doi: 10.1152/japplphysiol.01247.2010.[Crossref][WoS]
  • 29. Cifrek M., Medved V., Tonković S., Ostojić S., Surface EMG based muscle fatigue evaluation in biomechanics. Clin Biomech, 2009, 24 (4), 327-340, doi: 10.1016/j. clinbiomech.2009.01.010.[WoS][Crossref]
  • 30. Bini R.R., Diefenthaeler F., Mota C.B., Fatigue effects on the coordinative pattern during cycling: Kinetics and kinematics evaluation. J Electromyogr Kinesiol, 2010, 20 (1), 102-107, doi: 10.1016/j.jelekin.2008.10.003.[Crossref]
  • 31. Malek M.H., Housh T.J., Coburn J.W., Weir J.P., Schmidt R.J., Beck T.W., The effects of interelectrode distance on electromyographic amplitude and mean power frequency during incremental cycle ergometry. J Neurosci Methods, 2006, 151 (2), 139-147, doi: 10.1016/j. jneumeth.2005.06.025.[Crossref]
  • 32. Bini R.R, Hume P.A, Lanferdini F.J, Vaz M.A., Effects of body positions on the saddle on pedalling technique for cyclists and triathletes. Eur J Sport Sci, 2014, 14 (Suppl. 1), S413-S420, doi: 10.1080/17461391.2012.708792.[WoS][Crossref]
  • 33. Dorel S., Couturier A., Hug F., Influence of different racing positions on mechanical and electromyographic patterns during pedalling. Scand J Med Sci Sports, 2009, 19 (1), 44-54, doi: 10.1111/j.1600-0838.2007.00765.x.[Crossref]
  • 34. Sanderson D.J., Amoroso A.T., The influence of seat height on the mechanical function of the triceps surae muscles during steady-rate cycling. J Electromyogr Kinesiol, 2009, 19 (6), e465-e471, doi: 10.1016/j.jelekin.2008.09.011.[Crossref]
  • 35. Savelberg H.H.C.M., Meijer K., Contribution of monoand biarticular muscles to extending knee joint moments in runners and cyclists. J Appl Physiol, 2003, 94 (6), 2241-2248, doi:10.1152/japplphysiol.01001.2002.[Crossref]
  • 36. Peveler W.W., Shew B., Johnson S., Palmer T.G., A kinematic comparison of alterations to knee and ankle angles from resting measures to active pedaling during a graded exercise protocol. J Strength Cond Res, 2012, 26 (11), 3004-3009, doi: 10.1519/JSC.0b013e318243fdcb. [Crossref][WoS]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.