PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 21 | 2 | 245-254
Tytuł artykułu

Changes of Isotopic Composition in Gases Emitted from Wastewater Treatment Plant - Preliminary Study

Treść / Zawartość
Warianty tytułu
PL
Zmiany Składu Izotopowego Gazów Emitowanych Z Oczyszczalni ścieków - Badania Wstępne
Języki publikacji
EN
Abstrakty
EN
Investigations of processes occurring during wastewater treatment have progressed beyond the stage of technology. Currently, great numbers of representatives of diverse specialist research apply increasingly sophisticated measurement methods that have not been employed in this field of science. One of the methods is IRMS (Isotope Ratio Mass Spectrometry). Tracking changes in the ratios of biogenic element isotopes is useful in eg identification and monitoring of investigated processes. Since the IRMS technique has hardly been used for investigations of the wastewater treatment process, pilot research should be instigated to determine the isotope ratios occurring naturally in the process. The aim of the study was to determine changes in carbon and nitrogen isotope ratios at the successive stages of the technological line in wastewater treatment plants. The study material comprised: i) suspensions of raw sewage and mixtures of wastewater and activated sludge; ii) gases sampled from the volume of the suspensions; iii) gases sampled from the air above the suspension surface. The research material originated from the facilities of “Hajdow” municipal wastewater treatment plant in Lublin (SE Poland). The samples were analysed for the carbon and nitrogen isotope ratios, and the concentrations of the gases as well as total organic carbon (TOC), inorganic carbon (IC), Kjeldahl nitrogen (KN), dry weight, pH, and Eh were determined. The results obtained suggest that: i) the IRMS technique can be successfully applied in investigations of processes occurring during wastewater treatment; ii) isotope ratios in the carbon and nitrogen compounds (CO2 and N2) both in the suspensions and gases contained therein and in the air above them differ from each other and change at the different stages of the treatment process; iii) further research is indispensable in order to identify processes responsible for fractionation of carbon and nitrogen isotopes.
Słowa kluczowe
Wydawca

Rocznik
Tom
21
Numer
2
Strony
245-254
Opis fizyczny
Daty
online
2014-07-08
Twórcy
  • Institue of Agrophysics, Polish Academy of Science, ul. Doświadczalna 4, 20-290 Lublin, Poland
  • Institue of Agrophysics, Polish Academy of Science, ul. Doświadczalna 4, 20-290 Lublin, Poland
  • Mass Spectrometry Laboratory, Institute of Physics, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
Bibliografia
  • [1] Malicki J, Montusiewicz A, Bieganowski A. Improvement of counting helminth eggs with internal standard. Water Res. 2001;35(9):2333-2335. DOI: 10.1016/S0043-1354(00)00517-0.[Crossref]
  • [2] Le NT, Julcour C, Ratsimba B, Delmas H. Improving sewage sludge ultrasonic pretreatment under pressure by changing initial pH. J Environ Manage. 2013;128:548-554. DOI: 10.1016/j.jenvman.2013.06.001.[PubMed][Crossref][WoS]
  • [3] Puigagut J, Salvado H, Garcia J. Short-term harmful of ammonia nitrogen on activated sludge microfauna. Water Res. 2005;39:4397-4404. DOI:10.1016/j.watres.2005.08.008.[Crossref][PubMed]
  • [4] Pérez-Uz B, Arregui L, Calvo P, Salvadó H, Fernández N, Rodrígeuz E, et al. Assessment of plausible bioindicators for plant performance in advanced wastewater treatment systems. Water Res. 2010;44(17):5059-5069. DOI:10.1016/j.watres.2010.07.024.[Crossref]
  • [5] Jaromin-Gleń K, Babko R, Łagód G, Sobczuk H. Community composition and abundance of protozoa under different concentration of nitrogen compounds at “Hajdow” wastewater treatment plant. Ecol Chem Eng S. 2013;20(1):127-139. DOI: 10.2478/eces-2013-0010.[Crossref][WoS]
  • [6] Jiang JG, Shen YF. Use of the aquatic protozoa to formulate a community biotic index for an urban water system. Sci Total Environ. 2005;346(1-3):99-111. DOI:10.1016/j.scitotenv.2004.12.001.[Crossref]
  • [7] Łagód G, Chomczyńska M, Montusiewicz A, Malicki J, Bieganowski A. The proposal of measurement and visualization methods for dominance structures in the saprobe communities. Ecol Chem Eng S. 2009;16(3):371-376.
  • [8] Babko R, Łagód G, Jaromin-Gleń K. Abundance and structure of ciliated protozoa community at the particular devices of “Hajdów” WWTP. Ann Set Environ Prot. 2012;14:56-68.
  • [9] Guellil A, Thomas F, Block J-C, Bersillon J-L, Ginestet P. Transfer of organic matter between wastewater and activated sludge flocs. Water Res. 2001; 35(1):143-150. DOI: 10.1016/S0043-1354(00)00240-2[Crossref][PubMed]
  • [10] Bieganowski A, Łagód G, Ryżak M, Montusiewicz A, Chomczyńska M, Sochan A. Measurement of activated sludge particle diameters using laser diffraction method. Ecol Chem Eng S. 2012;19(4):597-608. DOI: 10.2478/v10216-011-0042-7.[Crossref]
  • [11] Yu RF, Chen HW, Cheng WP, Chu ML. Measurements of wastewater true color by 4/6 wavelength methods and artificial neural network. Environ Monit Assess. 2006;118(1-3):195-209. DOI: 10.1007/s10661-006-1491-9.
  • [12] Lagardea F, Tusseau-Vuillemina M, Lessardb P, He´duita P, Dutropa F, Mouchelc JM. Variability estimation of urban wastewater biodegradable fractions by respirometry. Water Res. 2005;39(19):4768-4778. DOI: 10.1016/j.watres.2005.08.026.[Crossref]
  • [13] Dulekgurgen E, Dogruel S, Karahan O, Orhon D. Size distribution of wastewater COD fractions as an index for biodegradability. Water Res. 2006;40(2):273-282. DOI: 10.1016/j.watres.2005.10.032.[Crossref]
  • [14] Pasztor I, Thury P, Pulai J. Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment. Intern J Environ Sci Technol. 2009;6(1):51-56. DOI: 10.1007/BF03326059.[Crossref]
  • [15] Vollertsen J, Hvitved-Jacobsen T. Biodegradability of wastewater - a method for COD-fractionation. Water Sci Technol. 2002;45(3):25-34.
  • [16] Mąkinia J. Performance prediction of full-scale biological nutrient removal systems using complex activated sludge models. - Veröffentlichungen des Institutes für Siedlungswasser-wirtschaft und Abfalltechnik der Universität Hannover. 2006; 136.
  • [17] Drewnowski J, Makinia J. Modeling hydrolysis of slowly biodegradable organic compounds in biological nutrient removal activated sludge systems. Water Sci Technol. 2013;67(9):2067-2074. DOI: 10.2166/wst.2013.092.[WoS][Crossref]
  • [18] Ganoulis J. Risk analysis of wastewater reuse in agriculture. Intern J Recycling Organic Waste Agric. 2012;1(3):1-9. DOI: 10.1186/2251-7715-1-3.[Crossref]
  • [19] Wojcieszczuk T, Hammal O, Malinowski R, Wojcieszczuk M, Chorągwicki Ł. The activity of chemical components of light and heavy soil in Syria after use of municipal sewage sludge from Deir Ez Zor City. Soil Sci Ann. 2012;63(3): 43-48. DOI: 10.2478/v10239-012-0032-1.[Crossref]
  • [20] Nosalewicz M, Stępniewska Z, Nosalewicz A. Effect of soil moisture and temperature on N2O and CO2 concentrations in soil irrigated with purified wastewater. Int Agrophys. 2013;27(3):299-304. DOI: 10.2478/v10247-012-0098-3.[WoS][Crossref]
  • [21] Panahi Kordlaghari K, Nikeghbali Sisakht S, Saleh A. Soil chemical properties affected by application of treated municipal wastewater. Ann Biol Res. 2013;4(3):105-108.
  • [22] Gostelow P, Parsons SA, Stuetz RM. Odour measurements for sewage treatment works. Water Res. 2001;35(3):579-597. DOI: 10.1016/S0043-1354(00)00313-4.[Crossref]
  • [23] Stuetz RM, Fenner RA, Engin G. Assessment of odours from sewage treatment works by an electronic nose, H2S analysis and olfactometry. Water Res. 1999;33(2)b:453-461. DOI: 10.1016/S0043-1354(98)00246-2.[Crossref]
  • [24] Onkal-Engin G, Demir I, Engin SN. Determination of the relationship between sewage odour and BOD by neural networks. Environ Model Softw. 2005;20(7):843-850. DOI: 10.1016/j.envsoft.2004.04.012.[Crossref]
  • [25] Gupta D, Sing SK. Greenhouse gas emissions from wastewater treatment plants: A case study of noida. J Water Sustain. 2012;2(2):131-139.
  • [26] Daelman MRJ, van Voorthuizen EM, van Dongen LGJM, Volcke EIP, van Loosdrecht MCM. Methane and nitrous oxide emissions from municipal wastewater treatment - results from a long-term study. Water Sci Technol. 2013;67(10):2350-2355. DOI: 10.2166/wst.2013.109.[Crossref][WoS]
  • [27] Stuetz RM, Fenner RA, Engin G. Characterisation of wastewater using an electronic nose. Water Res. 1999;33(2):442-452. DOI: 10.1016/S0043-1354(98)00245-0.[Crossref]
  • [28] Bourgeois W, Stuetz RM. Use of a chemical sensor array for detecting pollutants in domestic wastewater. Water Res. 2002;36(18):4505-4512. DOI: 10.1016/S0043-1354(02)00183-5.[Crossref]
  • [29] Baggs EM. A review of stable isotope techniques for N2O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Commun Mass Spectrom. 2008;22(11):1664-1672. DOI: 10.1002/rcm.3456.[Crossref]
  • [30] Kuzyakov Y. How to link soil C pools with CO2 fluxes? Biogeosciences. 2011;8(6):1523-1537. DOI: 10.5194/bg-8-1523-2011.[WoS][Crossref]
  • [31] Busari MA, Salako FK, Tuniz C, Zuppi GM, Stenni B, Adetunji MT, et al. Estimation of soil water evaporative loss after tillage operation using the stable isotope technique. Int Agrophys. 2013;27(3):257-264. DOI: 10.2478/v10247-012-0093-8.[WoS][Crossref]
  • [32] Szarlip P, Stelmach W, Jaromin-Glen K, Bieganowski A, Brzezinska M, Trembaczowski A, et al. Comparison of the dynamics of natural biodegradation of petrol and diesel oil in soil. Desal Water Treat. 2014;1-8. DOI: 10.1080/19443994.2014.883777.[Crossref]
  • [33] Muccio Z, Jackson GP. Isotope Ratio Mass Spectrometry. Analyst. 2009;134(2):213-22. DOI: 10.1039/b808232d.[WoS][Crossref]
  • [34] Ronkanen A-K, Kløve B. Use of stabile isotopes and tracers to detect preferential flow patterns in a peatland treating municipal wastewater. J Hydrol. 2007;347(3-4):418-429. DOI: 10.1016/j.jhydrol.2007.09.029.[WoS][Crossref]
  • [35] Law Y, Jacobsen GE, Smith AM, Yuan Z, Lant P. Fossil organic carbon in wastewater and its fate in treatment plants. Water Res. 2013;47(14):5270-5281. DOI: 10.1016/j.watres.2013.06.002.[Crossref]
  • [36] Zvab Rozic P, Dolenec T, Lojen S, Kniewald G, Doleneca M. Using stable nitrogen isotopes in Patella sp. to trace sewage-derived material in coastal ecosystems. Ecol Indic. 2014;36:224-230. DOI: 10.1016/j.ecolind.2013.07.023.[WoS][Crossref]
  • [37] Morrissey CA, Boldt A, Mapstone A, Newton J, Ormerod SJ. Stable isotopes as indicators of wastewater effects on the macroinvertebrates of urban rivers. Hydrobiologia. 2013;700(1):231-244. DOI: 10.1007/s10750-012-1233-7.[Crossref][WoS]
  • [38] Lindehoff E, Graneli E, Graneli W. Effect of tertiary sewage effluent additions on Prymnesium parvum cell toxicity and stable isotope ratios. Harmful Algae. 2009;8(2):247-253. DOI: 10.1016/j.hal.2008.06.004.[WoS][Crossref]
  • [39] Gammons CH, Babcock JN, Parker SR, Poulson SR. Diel cycling and stable isotopes of dissolved oxygen, dissolved inorganic carbon, and nitrogenous species in a stream receiving treated municipal sewage. Chemical Geology. 2011;283(1-2):44-55. DOI: 10.1016/j.chemgeo.2010.07.006.[Crossref][WoS]
  • [40] Schwartz E, Blazewicz S, Doucett R, Hungate BA, Hart SC, Dijkstra P. Natural abundance δ15N and δ13C of DNA extracted from soil. Soil Biol Biochem. 2007;39:3101-3107. DOI: 10.1016/j.soilbio.2007.07.004.[Crossref][WoS]
  • [41] Pollierer MM, Langel R, Scheu S, Maraun M. Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biol Biochem. 2009;41(6):1221-1226. DOI: 10.1016/j.soilbio.2009.03.002.[Crossref][WoS]
  • [42] Szaran J, Dudziak A, Trembaczowski A, Niezgoda H, Hałas S. Diurnal variations and vertical distribution of δ13C, and concentration of atmospheric and soil CO2 in a meadow site, SE Poland. Geol Quart. 2005;49(2):135-144.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_eces-2014-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.