PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 20 | 3 | 579-599
Tytuł artykułu

Study on Properties of Alloys with Gallium, Antimony and Zinc from Recycling

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alloys with gallium, antimony and zinc, whose elements, metal constituent WEEE (they are specified for mobile phones) are particularly important for developing photoelectron devices, simple reproductive methods of producing p-n structures GaSb, also for production and construction of photo-wave cells in solar panels and they are also processes which develop ceramic semiconductors. In addition, these alloys represent possible substitute for standard lead-tin seam. For the complete definition of the properties of the ternary Ga-Sb-Zn system there were performed many researches of the alloys. The microstructures of the alloys were investigated by usage of SEM with EDS and optic microscopy. By usage of CALPHAD method there was detected the isothermal cross-section at 25ºC. The GaSb has similarities in the properties and behaviour with GaAs, and it is a potential material for the construction of the p-n diode, the photo-wave and thermo-photo-wave cells in solar panels and LCDs. Newly developed materials have been recommended as an adequate replacement for lead and arsenic, which are very dangerous and harmful metals.
PL
Stopy zawierające gal, antymon i cynk, będące metalicznymi składnikami e-odpadów (są wykorzystywane zwłaszcza w telefonach komórkowych), są szczególnie ważne w budowie urządzeń fotoelektrycznych, w wytwarzaniu struktur p-n GaSb, także w produkcji ogniw fotowoltaicznych i w wytwarzaniu półprzewodników ceramicznych. Ponadto stopy te mogą zastąpić standardowe stopy ołowiowo-cynowe. Dla pełnego określenia właściwości trójskładnikowego układu Ga-Sb-Zn badania stopów przeprowadzono w wielu powtórzeniach. Mikrostruktury stopów badano z wykorzystaniem SEM z EDS i mikroskopii optycznej. Dzięki wykorzystaniu metody CALPHAD stworzono diagram fazowy dla temperatury 25ºC. GaSb wykazuje podobne właściwości i zachowanie do GaAs, a to stwarza możliwość wykorzystania tego stopu do budowy diod p-n, elementów fotoelektrycznych i termofotoelektrycznych, wykorzystywanych w panelach słonecznych i LCD. Nowo opracowane materiały są zalecane jako odpowiednie zamienniki ołowiu i arsenu, które są metalami bardzo niebezpiecznymi i szkodliwymi.
Wydawca
Rocznik
Tom
20
Numer
3
Strony
579-599
Opis fizyczny
Daty
wydano
2013-09-01
online
2013-10-08
Twórcy
  • Faculty of Technical Science, University of Priština, Kos. Mitrovica, Serbia
  • Faculty of Mechanical Engineering, University of Kragujevac, Kraljevo, Serbia
  • Faculty of Technology and Metallurgy, University of Belgrade, Serbia
  • Faculty of Technology and Metallurgy, University of Belgrade, Serbia
Bibliografia
  • [1] www.unep.org/vacancies/
  • [2] Tsydenova O, Bengtsson M. Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manage. 2011;31(1):45-58. DOI: 10.1016/j.wasman.2010.08.014.[Crossref]
  • [3] Santos MC, Nóbrega JA, Baccan N, Cadore S. Determination of toxic elements in plastics from waste electrical and electronic equipment by slurry sampling electrothermal atomic absorption spectrometry. Talanta. 2010;81(4-5):1781-1787. DOI: 10.1016/j.talanta.2010.03.038.[PubMed][Crossref]
  • [4] Johnson J, Harper EM, Lifset R, Graedel TE. Dining at the periodic table: Metals concentrations as they relate to recycling. Environ Sci Technol. 2007;41(5):1759-1765. DOI: 10.1021/es060736h.[PubMed][Crossref][WoS]
  • [5] Hwahg JS. (Ed). Environment-friendly Electronics: Lead-free Technology. Electrochemical Publications Ltd. Port Erin. UK 2001;97-105.
  • [6] George E, Das D, Osterman M, Pecht M. Thermal cycling reliability of lead-free solders (SAC305 and Sn3.5Ag) for high-temperature applications. IEEE Transactions on Device and Materials Reliability. 2011;11(2):328-338. DOI: 10.1109/TDMR.2011.2134100.[WoS][Crossref]
  • [7] Sulima OV, Bett AW. Fabrication and simulation of GaSb termophotovoltaic cells. Solar Energy Mater and Solar Cells. 2001;66(1-4):533-540. DOI: 10.1016/S0927-0248(00)00235-X.[Crossref]
  • [8] Luca S, Santailler J. L, Rothman J, Belle JP, Calvat C, Basset G, Passero A, Khvostikov VP, Potapovich NS, Levin RV. GaSb crystals and wafers for photovoltaic devices. J Sol Energ.-T. ASME. 2007;129(3):304-311. DOI: 10.1115/1.2734570.[WoS][Crossref]
  • [9] Adjadj F, Belbacha E, Bouharkat M, Kerboub A. Crystallographic study of the intermediate compounds SbZn, Sb3Zn4 and Sb2Zn3. J Alloy Compd. 2006;419(1-2):267-270. DOI: 10.1016/j.jallcom.2005.09.068.[Crossref]
  • [10] Nakajima K, Takeda O, Miki T, Nagasaka T. Evaluation method of metal resource recoverability of based on thermodynamic analysis. J Jpn I Met. 2009;73(10):794-801. DOI: 10.2320/jinstmet.73.794.[Crossref][WoS]
  • [11] Chancerel P, Rotter S. Recycling-oriented characterization of small waste electrical and electronic equipment. Waste Manage. 2009;9(8):336-2352. DOI: 10.1016/j.wasman.2009.04.003.[Crossref]
  • [12] Wäger PA, Hischier R, Eugster M. Environmental impacts of the Swiss collection and recovery systems for Waste Electrical and Electronic Equipment (WEEE). Sci Total Environ. 2011;409(10):1746-1756. DOI: 10.1016/j.scitotenv.2011.01.050.[WoS][Crossref]
  • [13] Luo HJ, Liu AM, Xu F, Weng ZK. Progress on theories and experiments of Zn-diffusion in fabricating GaSb cells. Gongneng Cailiao/J of Functional Mater. 2006;37:315-319.
  • [14] Baldini M, Ghezzi C, Parisini A, Tarricone L, Vantaggio S, Gombia E, Motta A, Gasparotto A. Growth and characterization of buried GaSb p-n junctions for photovoltaic applications. Crystal Res and Technol. 2011;46(8):852-856. DOI: 10.1002/crat.201000639.[Crossref][WoS]
  • [15] Bracht H, Nicols SP, Haller EE, Silveira JP, Briones F. Self-diffusion in 69Ga121Sb/71Ga123Sb isotope heterostructures. J Appl Phys. 2001;89(10):5393-5399. DOI: 10.1063/1.1363683.[Crossref]
  • [16] Ye H, Tang L.L, Ma Y.L. Experimental and theoretical investigation of zinc diffusion in N-GaSb. Chinese Sci Bull. 2010;55(23):2489-2496. DOI: 10.1007/s11434-010-4037-z.[Crossref][WoS]
  • [17] Gaied I, Abroug S, Yacoubi N. Investigation of thermal diffusivity of doped and undoped GaSb by the Photothermal Deflection Technique. Phys Procedia. 2009;2(3):859-864. DOI: 10.1016/j.phpro.2009.11.036.[Crossref]
  • [18] Nicols SP, Bracht H, Benamara M, Liliental-Weber Z, Haller EE. Mechanism of zinc diffusion in gallium antimonide. Phys B: Condensed Matter. 2001;308-310:854-857. DOI: 10.1016/S0921-4526(01)00913-9.[Crossref]
  • [19] Zheng Q, Ye H, Tang L. Experimental investigation on the mechanism of zinc diffusion in tellurium doped gallium antimonide. Taiyangneng Xuebao/Acta Energiae Solaris Sinica. 2011;32(1):35-40.
  • [20] Sridaran S, Chavan A, Dutta PS. Fabrication and passivation of GaSb photodiodes. J of Crystal Growth. 2008;310(7-9):1590-1594. DOI: 10.1016/j.jcrysgro.2007.11.186.[Crossref][WoS]
  • [21] Milosavljević A, Živković DT, Manasijević DM, Talijan NM, Ćosović VR, Grujić AS, Marjanović BR. Phase diagram investigation and characterisation of ternary Sn-In-Me (Me = Ag, Cu) lead-free solder systems. Internat J of Mater & Product Technol. 2010;39(1-2):95-107. DOI: 10.1504/IJMPT.2010.034263.[Crossref][WoS]
  • [22] Muumlllera WH, Hauck T. Simple methods for the durability assessment of microelectronic solders. Mechanics of Advanced Mater and Structur. 2008;15(6-7):485-498. DOI: 10.1080/15376490802142437.[Crossref]
  • [23] Li Y, Richardson JB, Niu X, Jackson OJ, Laster JD, Walker AK. Dynamic leaching test of personal computer components. J Hazard Mater. 2009;171(1-3):1058-1065. DOI: 10.1016/j.jhazmat.2009.06.113.[Crossref][WoS]
  • [24] Socolofa ML, Geibigb JR. Evaluating human and ecological impacts of a product life cycle: The complementary roles of life-cycle assessment and risk assessment. An Internat J. 2006;12(3):510-527. DOI: 10.1080/10807030600582796.[Crossref]
  • [25] Dervišević I, Todorović A, Talijan N, Dokić J. Experimental investigation and thermodynamic calculation of the Ga-Sb-Zn phase diagram. J Mater Sci. 2010;45(10):2725-2731. DOI: 10.1007/s10853-010-4258-1.[Crossref]
  • [26] Kroupa A, Dinsdale AT, Watson A, Vrestal J, Vizdal J, Zemanova A. The development of the COST 531 lead-free solders thermodynamic database. JOM Journal of the Minerals, Metals and Materials Society. 2007;59(7):20-25. DOI: 10.1007/s11837-007-0084-6.[Crossref]
  • [27] Vešťál J, Štrof J, Pavlů J. Extension of SGTE data for pure elements to zero Kelvin temperature - A case study. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry. 2012;37:37-48. DOI: 10.1016/j.calphad.2012.01.003.[WoS][Crossref]
  • [28] Kolarevic M. Regresioni model. Brzi razvoj proizvoda. Beograd: Zadužbina Andrejević; 2004.
  • [29] Yamamoto N, Makino H, Osone S, Ujihara A, Ito T, Hokari H, Maruyama T, Yamamoto T. Development of Ga-doped ZnO transparent electrodes for liquid crystal display panels. Thin Solid Films. 2012;520(12):4131-4138. DOI: 10.1016/j.tsf.2011.04.067.[Crossref][WoS]
  • [30] Salhofer S, Spitzbart M, Maurer K. Recycling of flat screens as a new challenge. Proceedings of Institution of Civil Engineers: Waste and Resour Manage. 2012;165(1):37-43. DOI: 10.1680/warm.2012.165.1.37.[Crossref]
  • [31] Ye H, Xue S, Luo J, Li Y. Properties and interfacial microstructure of Sn-Zn-Ga solder joint with rare earth Pr addition. Materials and Design. 2013;46:816-823. DOI: 10.1016/j.matdes.2012.10.034[Crossref]
  • [32] Chew KH. Drop in Replacement of Tin/lead Solder Alloy in Wave Soldering Process - Lead Free Solders. Quantum Chemical Technologies (S) Pte Ltd. Singapore Asahi Chemical & Solder Ind. Pte Ltd.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_eces-2013-0042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.