PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 20 | 3 | 567-578
Tytuł artykułu

Numerical Study on Thermal Environment in Mine Gob Under Coal Oxidation Condition

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most feared of hazards in underground mines are those of fires and explosions. This study focuses on the temperature-rising process of residual coal under spontaneous combustion condition in coal mine gob. A numerical model has been established considering the chemical reaction, heat transfer and components seepage flow. The temperature distributions and maximum values for different positrons at various times have been calculated by using the coupled model. An experimental model has been also developed for model calibration. The validation indicates the numerical model is accurate and suitable for solving the temperature-rising problem in coalmines. The simulation results show that high temperature zone appears at the air intake roadway side in the gob and enlarging the ventilation flux increases the risk of self-ignition of coal. The research results can be used to predict the temperature-rising of coal spontaneous combustion and coal resources prevention.
PL
Pożary i wybuchy stanowią największe zagrożenia w kopalniach. Opisane w pracy badania dotyczą procesów powodujących wzrost temperatury resztkowego węgla, doprowadzający do jego samozapłonu, w odpadach z kopalni. Model numeryczny sformułowano, biorąc pod uwagę reakcje chemiczne, wymianę ciepła i przepływy składników. Rozkłady temperatury i maksymalne wartości w różnych położeniach i w różnych czasach zostały obliczone z użyciem modelu sprzężonego. Do kalibracji został również opracowany model doświadczalny. Walidacja wykazała, że model numeryczny jest dokładny i odpowiedni do rozwiązania problemu wzrostu temperatury w kopalniach węgla. Wyniki symulacji wskazują, że strefa podwyższonej temperatury pojawia się na szlakach wlotu powietrza do materiału i zwiększenie strumienia wentylującego zwiększa ryzyko samozapłonu węgla. Wyniki badań mogą być wykorzystane do przewidywania wzrostu temperatury grożącego samozapłonem węgla oraz do ochrony jego zasobów.
Wydawca

Rocznik
Tom
20
Numer
3
Strony
567-578
Opis fizyczny
Daty
wydano
2013-09-01
online
2013-10-08
Twórcy
autor
  • School of Safety Engineering, China University of Mining and Technology, XU-ZHOU City, China, cumtwangym@163.com
autor
autor
  • Key Laboratory of Gas and Fire Control for Coal Mines, XU-ZHOU City, China, wangdmcumt@163.com
Bibliografia
  • [1] Stracher GB, Taylor TP. Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. Int J Coal Geol. 2004;59(1-2):7-17. DOI:10.1016/j.coal.2003.03.002.[Crossref]
  • [2] Nolter MA, Vice DH. Looking back at the Centralia coal fire: a synopsis of its present status. Int J Coal Geol. 2004;59(1-2):99-106. DOI: 10.1016/j.coal.2003.12.008.[Crossref]
  • [3] Whitehouse AE, Mulyana AAS. Coal fires in Indonesia. Int J Coal Geol. 2004;59(1-2):91-97. DOI: 10.1016/j.coal.2003.08.010.[Crossref]
  • [4] Heffem EL, Coates DA. Geologic history of natural coal-bed fires, Powder River basin, USA. Int J Coal Geol. 2004;59(1-2):25-47. DOI: 10.1016/j.coal.2003.07.002.[Crossref]
  • [5] Hower JC, Henke KR, O'Keefe JMK, Engle MA, Blake DR, Stracher GB. The Tiptop coal mine fire, Kentucky: preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents. Int J Coal Geol. 2009;80(1):63-67. DOI: 10.1016/j.coal.2009.08.005.[Crossref]
  • [6] Kuenzer C, Zhang J, Tetzlaff A, Voigt S, Van Dijk P, Wagner W, Mehl H. Uncontrolled coal fires and their environmental impacts: investigating two arid mining environments in north-central China. Appl Geogr. 2007;27:42-62.[Crossref]
  • [7] Rosema A, Guan H, Veld H. Simulation of spontaneous combustion, to study the causes of coal fires in the Rujigou basin. Fuel. 2001;80:7-16. DOI: 10.1016/S0016-2361(00)00065-X.[Crossref]
  • [8] Jones JC, Newman SC. Non-Arrhenius behavior in the oxidation of two carbonaceous substrates. J Loss Prevent Proc. 2003;16:223-225. DOI: 10.1016/S0950-4230(02)00115-8.[Crossref]
  • [9] Beamish BB, Blazak DG. Relationship between ash content and R70 self-heating rate of Callide coal. Int J Coal Geol. 2005;64:126-132.[Crossref]
  • [10] Beamish BB, Hamilton GR. Effect of moisture content on the R70 self-heating rate of Callide coal. Int J Coal Geol. 2005;64:133-138. DOI: 10.1016/j.coal.2005.03.011.[Crossref]
  • [11] Ozbas KE, Kök MV, Hicyilmaz C. DSC study of the combustion properties of Turkish coals. J Therm Anal Calorim. 2003;71:849-856. DOI: 10.1023/A:1023378226686.[Crossref]
  • [12] Carras JN, Day SJ, Saghafi A, Williams DJ. Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. Int J Coal Geol. 2009;78(2):161-168. DOI: 10.1016/j.coal.2008.12.001.[WoS][Crossref]
  • [13] Yip K, Ng E, Li CZ, Hayashi JI, Wu HW. A mechanistic study on kinetic compensation effect during low-temperature oxidation of coal chars. P Combust Inst. 2011;33(2):1755-1762. DOI: 10.1016/j.proci.2010.07.073.[Crossref][WoS]
  • [14] Taraba B, Peter R, Slovák V. Calorimetric investigation of chemical additives affecting oxidation of coal at low temperatures. Fuel Process Technol. 2011;92(3):712-715. DOI: 10.1016/j.fuproc.2010.12.003.[Crossref][WoS]
  • [15] Biswas S, Choudhury N, Sarkar P, Mukherjee A, Sahu SG, Boral P, Choudhury A. Studies on the combustion behavior of blends of Indian coals by TGA and Drop Tube Furnace. Fuel Process Technol. 2006;87:191-199. DOI: 10.1016/j.fuproc.2005.05.002.[Crossref]
  • [16] Li X, Matuschek G, Herrera M, Wang H, Kettrup A. A study on combustion of Chinese coals by TA/MS. J Anal Appl Pyrolysis. 2003;67:393-406. DOI: 10.1016/S0165-2370(02)00077-3.[Crossref]
  • [17] Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F. Thermal behavior and kinetics of coal/biomass blends during co-combustion. Bioresour Technol. 2010;101:5601-5608.[Crossref][PubMed][WoS]
  • [18] Porada S. The influence of elevated pressure on the kinetics of evolution of selected gaseous products during coal pyrolysis. Fuel. 2004;83:1071-1078. DOI: 10.1016/j.fuel.2003.11.004.[Crossref]
  • [19] Porada S. The reactions of formation of selected gas products during coal pyrolysis. Fuel. 2004;83(9):1191-1196. DOI: 10.1016/j.fuel.2003.11.007.[Crossref]
  • [20] Duan L, Zhao C, Zhou W, Qu C, Chen X. O2/CO2 coal combustion characteristics in a 50 kWth circulating fluidized bed. Int J Greehouse Gas Control. 2011;5(4):770-776.[WoS]
  • [21] Tan YW, Croiset E, Douglas MA, Thambimuthua KV. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel. 2006;85:507-512. DOI: 10.1016/j.fuel.2005.08.010.[Crossref]
  • [22] Long S, Cao F, Wang S, Sun L, Pang J, Sun Y. Combustion characteristics of polyethylene and coal powder at high temperature. Int J Iron Steel Res. 2008;15(1):6-9.[Crossref][WoS]
  • [23] Yuan LM, Smith AC. Numerical study on effects of coal properties on spontaneous heating in longwall gob areas. Fuel. 2008;87(15-16):3409-3419. DOI: 10.1016/j.fuel.2008.05.015.[Crossref][WoS]
  • [24] Huang JJ, Bruining J, Wolf KHAA. Modeling of gas flow and temperature fields in underground coal fires. Fire Saf J. 2001;36(5):477-489. DOI: 10.1016/S0379-7112(01)00003-0.[Crossref]
  • [25] Wolf KHAA, Bruining J. Modeling the interaction between underground coal fires and their roof rocks. Fuel. 2007;86(17-18):2761-2777. DOI: 10.1016/j.fuel.2007.03.009.[WoS][Crossref]
  • [26] Wessling, S, Kuenzer C, Kessels W, Wuttkea MW. Numerical modeling for analyzing thermal surface anomalies induced by underground coal fires. Int J Coal Geol. 2008;7(3-4):175-184. DOI: 10.1016/j.coal.2007.12.005.[WoS][Crossref]
  • [27] Singh RN, Shonhardt JA, Terezopoulos NA. A new dimension to studies of spontaneous combustion of coal. Miner Resour Eng. 2002;11(2):147-163. DOI: 10.1142/S0950609802000938.[Crossref]
  • [28] Xie KC, Liu SY. Application of pyrolysis/Fourier transform infrared spectroscopy to study the reaction of pyrolysis. Chinese J Anal Chem. 2003;31(4):501-504.
  • [29] Tan HP, Xia XL, Liu LH, Ruan LM. Numerical Calculation of Infrared Radiation Properties and Transfer. Harbin: Harbin Institute of Technology Press; 2006.
  • [30] Tan HP, Liu LH, Yi HL, Zhao JM, Qi H, Tan JY. Recent progress in computational thermal radiative transfer. Chinese Sci Bull. 2009;54(22):4135-4147. DOI: 10.1007/s11434-009-0625-1.[Crossref][WoS]
  • [31] Yi HL, Tan HP. Transient radiative heat transfer in an inhomogeneous participating medium with Fennel’s surfaces. Sci China Ser E. 2008;51(8):1110-1124. DOI: 10.1007/s11431-008-0169-7.[Crossref][WoS]
  • [32] Liu B, Yuan Y, Yi HL, Dong SK, Tan HP. Radiative heat transfer in a multilayer semitransparent scattering medium using the p-n-approximation method. Heat Transf. Res. 2012;43(7):591-614. DOI: 10.1615/HeatTransRes.2012005899.[WoS][Crossref]
  • [33] Yuan Y, Xie F, Yi HL, Dong SK, Tan HP. P-N-approximation method for infrared transmission characteristics in nonlinear anisotropic scattering medium. J Infrared Millim W. 2011;30(5):439-445.[WoS]
  • [34] Shuai Y, Dong SK, Tan HP. Simulation of the infrared radiation characteristics of high temperature exhaust plume including particles using the backward Monte Carlo method. J Quant Spectrosc Ra. 2005;95(2):231-240. DOI: 10.1016/j.jqsrt.2004.11.001.[Crossref]
  • [35] Shuai Y, Xia XL, Tan HP. Numerical study of radiation characteristics in a dish solar collector system. J Sol Energ-T ASME. 2008;130(2):021001. DOI: 10.1115/1.2840570.[Crossref][WoS]
  • [36] Shuai Y, Zhang HC, Tan HP. Radiation symmetry test and uncertainty analysis of Monte Carlo method based on radiative exchange factor. J Quant Spectrosc Ra. 2008;109(7):1281-1296. DOI: 10.1016/j.jqsrt.2007. 10 .001. [WoS][Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_eces-2013-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.