PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 20 | 2 | 353-370
Tytuł artykułu

The Use of Water Plants in Biomonitoring And Phytoremediation of Waters Polluted with Heavy Metals

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The publication is a synthetic review of many years of research on the possibility of using water plants (macrophytes) to assess pollution of surface waters and the possibility of using the biomass in phytoremediation processes. The results of the research of kinetics and equilibria of heavy metals sorption and desorption conditions were presented in order to repeatedly use the biomass, as well as the research on the influence of abiotic factors on sorption processes. Defence mechanisms of macrophytes, which enable them to vegetate in considerably polluted waters, have been discussed. The results presented herein and carried out in many countries demonstrate that macrophytes can be successfully used in the biomonitoring of water environments and phytoremediation of waters and sewage; however, validation of these procedures requires more detailed research of the mechanisms, which accompany them.
PL
Publikacja jest syntetycznym przeglądem prowadzonych od wielu lat badań, dotyczących możliwości zastosowania roślin wodnych (makrofitów) do oceny zanieczyszczenia wód powierzchniowych oraz możliwości wykorzystania ich biomasy w procesach fitoremediacji. Przedstawiono wyniki badań dotyczących kinetyki i równowag sorpcji metali ciężkich, warunków desorpcji, w celu wielokrotnego wykorzystania biomasy, oraz badań dotyczących wpływu czynników abiotycznych na procesy sorpcji. Omówiono mechanizmy obronne makrofitów, umożliwiające im wegetację w wodach o znacznym zanieczyszczeniu. Zaprezentowane wyniki badań, prowadzonych w wielu krajach świata, wskazują, że makrofity mogą być w przyszłości z powodzeniem wykorzystywane w biomonitoringu środowiska wodnego oraz w fitoremediacji wód i ścieków, przy czym walidacja procedur wymaga dokładniejszego poznania mechanizmów, jakie towarzyszą tym procesom.
Wydawca
Rocznik
Tom
20
Numer
2
Strony
353-370
Opis fizyczny
Daty
wydano
2013-06-01
online
2013-05-29
Twórcy
autor
  • Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 50 , kremspawel@gmail.com
  • Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 50
  • Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 50
  • Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42, fax +48 77 401 60 50 , aklos@uni.opole.pl
Bibliografia
  • [1] Szmeja J. Przewodnik do badań roślinności wodnej. Gdańsk: Wyd Uniwersytetu Gdańskiego; 2006.
  • [2] Gessner F. Hydrobotanik. Berlin: Bd. VEB Deutsche Verlg. Wissenschaften; 1959.
  • [3] Rabajczyk A, Jóźwiak MA. The possibilities of using macrophytes as bioindicators of heavy metals occurring in sediments. Monit Środow Przyrod. 2008;9:19-26
  • [4] Wołek J. Występowanie i rozmieszczenie roślin wodnych i szuwarowych na obszarze zespołu zbiorników wodnych Czorsztyn - Niedzica i Sromowe Wyżne przez spiętrzeniem wody. Fragm Flor Geobot., Series Polonica. 1996;3:189-203.
  • [5] Gabler D, Szoszkiewicz K. Ecological status assessment of rivers using macrophytes on selected examples. Scientific Review. Eng and Environ Sci. 2011;52:75-83.
  • [6] Stańczykowska A. Ekologia naszych wód. Warszawa: Wyd Szkolne i Pedagogiczne; 1997.
  • [7] Strzelec M, Spyra A, Serafiński W. Biologia wód śródlądowych: skrypt dla studentów I i II stopnia na kierunkach biologia i ochrona środowiska. Katowice: Wyd. Uniwersytetu Śląskiego; 2010.
  • [8] Polanowska M. Rośliny wodne. Warszawa: Wyd Szkolne i Pedagogiczne; 1992.
  • [9] Kłosowski G, Kłosowski S. Rośliny wodne i bagienne. Warszawa: MULTICO; 2001.
  • [10] Staniszewski R, Szoszkiewicz J. Rośliny stanowisk wilgotnych i wodnych. Poznań: Wyd. Uniwersytetu Przyrodniczego w Poznaniu; 2009.
  • [11] Matuszkiewicz W. Przewodnik do oznaczania zbiorowisk roślinnych Polski. Warszawa: Wyd Nauk PWN; 2001.
  • [12] Szoszkiewicz K, Jusik S, Zgoła T. Klucz do oznaczania makrofitów dla potrzeb oceny stanu ekologicznego wód powierzchniowych w Polsce. Warszawa: Biblioteka Monitoringu Środowiska; 2008.
  • [13] Guilizzoni P. The role of heavy metals and toxic materials in the physiological ecology of submersed macrophytes. Aquatic Botany. 1991;41(1-3):87-109. DOI: 10.1016/0304-3770(91)90040-C.[Crossref]
  • [14] Schneider IAH, Rubio J, Smith RW. Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation? Internat J Mineral Process. 2001;62(1-4):111-120. PII: S0301-7516(00)00047-8.
  • [15] André I, Schneider H, Rubio J. Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes. Environ Sci Technol. 1999;33:2213-2217.
  • [16] Wang G, Fuerstenau MC, Smith RW. Sorption of heavy metals onto nonliving water hyacinth roots. Mineral Processing and Extractive Metallurgy Review: An Internat J. 1998;19(1):309-322. DOI: 10.1080/08827509608962448.[Crossref]
  • [17] Schneider IAH, Smith RW, Rubio J. Effect of mining chemicals on biosorption of Cu(II) by the non-living biomass of the macrophyte Potamogeton lucens. Miner Eng. 1999;12(3):255-260. DOI: 10.1016/S0892-6875(99)00003-5.[Crossref]
  • [18] Lacher C, Smith RW. Sorption of Hg(II) by Potamogeton natans dead biomass. Miner Engineer. 2002;15:187-191. PII: S08 92-6 875(01)00212- 6.[Crossref]
  • [19] Miretzky P, Saralegui A, Cirelli AF. Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere. 2006;62:247-254. DOI: 10.1016/j.chemosphere.2005.05.010.[Crossref]
  • [20] Elifantz H, Tel-Or E. Heavy metal biosorption by plant biomass of the macrophyte Ludwigia Stolonifera. Water, Air, and Soil Pollut. 2002;141(1-4):207-218. DOI: 10.1023/A:1021343804220.[Crossref]
  • [21] Veglio F, Beolchini F. Removal of metals by biosorption: a review. Hydrometallurgy. 1997;44(3):301-316. DOI: 10.1016/S0304-386X(96)00059-X.[Crossref]
  • [22] Chojnacka K. Biosorption and bioaccumulation - the prospect for practical appications. Environ Internation. 2010;36:299-307. DOI:10.1016/j.envint.2009.12.001.[Crossref]
  • [23] Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk M, Forster CF. Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum) Process Biochem. 2003;39:179-183. DOI: 10.1016/S0032-9592(03)00045-1.[Crossref]
  • [24] Das N, Vimala R, Karthika P. Biosorption of heavy metals - An overview. Indian J Biotechnol. 2008;7:159-169.
  • [25] Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk M. Comparison of the adsorption capabilities of Myriophyllum spicatum and Ceratophyllum demersum for zinc, copper and lead. Eng Life Sci. 2007;7(2):192-196. DOI: 10.1002/elsc.200620177.[Crossref]
  • [26] Keskinkan O, Goksu MZL, Basibuyuk M, Forster CF. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol. 2004;92:197-200. DOI: 10.1016/j.biortech.2003.07.011.[Crossref]
  • [27] Ngayila N, Basly J-P, Lejeune A-H, Botineau M, Baudu M. Myriophyllum alterniflorum DC., biomonitor of metal pollution and water quality. Sorption/accumulation capacities and photosynthetic pigments composition changes after copper and cadmium exposure. Sci Total Environ. 2007;373:564-571. DOI: 10.1016/j.scitotenv.2006.11.038.[Crossref]
  • [28] Rai UN, Sinha S, Tripathi RD, Chandra P. Wastewater treatability potential of some aquatic macrophytes: Removal of heavy metals. Ecol Eng. 1995;5:5-12. SSDI:0925-8574(95)00011-9.[Crossref]
  • [29] Li G, Xue P, Yan C, Li Q. Copper biosorption by Myriophyllum spicatum: Effects of temperature and pH. Korean J Chem Eng. 2010;27(4):1239-1245. DOI: 10.1007/s11814-010-0183-x.[Crossref]
  • [30] Yan C, Wang S, Zeng A, Jin X, Xu Q, Zhao J. Equilibrium and kinetics of copper(II) biosorption by Myriophyllum spicatum L. J Environ Sci. 2005;17(6):1025-1029.
  • [31] Kähkönen MA, Manninen PKG. The uptake of nickel and chromium from water by Elodea canadensis at different nickel and chromium exposure levels. Chemosphere. 1998;36(6):1381-1390.[Crossref]
  • [32] Sivaci RD, Sivaci A, Sőkmen M. Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere. 2004;56:1043-1048. DOI: 10.1016/j.chemosphere.2004.05.032.[Crossref]
  • [33] Mechora Š, Cuderman P, Stibilj V, Germ M. Distribution of Se and its species in Myriophyllum spicatum and Ceratophyllum demersum growing in water containing Se(VI). Chemosphere. 2011;84:1636-1641. DOI: 10.1016/j.chemosphere.2011.05.024.[Crossref]
  • [34] Khang HV, Hatayama M, Inoue C. Arsenic accumulation by aquatic macrophyte coontail (Ceratophyllum demersum L.) exposed to arsenite, and the effect of iron on the uptake of arsenite and arsenate. Environ and Experim Botany. 2012;83:47-52. DOI: 10.1016/j.envexpbot.2012.04.008.[Crossref]
  • [35] Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere. 2006;65:1027-1039. DOI: 10.1016/j.chemosphere.2006.03.033.[Crossref]
  • [36] Peng K, Luo C, Lou L, Li X, Shen Z. Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci Total Environ. 2008;392(11): 22-29. DOI: 10.1016/j.scitotenv.2007.11.032.[Crossref]
  • [37] Begum A, HariKrishna S. Bioaccumulation of trace metals by aquatic plants. Internat J of Chem Tech Research. 2010;2(1):250-254.
  • [38] Sekomo CB, Rousseau DPL, Saleh SA, Lens PNL. Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecol Eng. 2012;44:102-110. DOI: 10.1016/j.ecoleng.2012.03.003. [Crossref]
  • [39] Lesage E, Mundia C, Rousseau DPL, Van de Moortel AMK, Du Laing G, Meers E, et al. Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol Eng. 2007;30:320-325. DOI: 10.1016/j.ecoleng.2007.04.007.[Crossref]
  • [40] Wang TC, Weissman JC, Ramesh G, Varadarajan R, Benemann JR. Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bulletin of Environ Contamin and Toxicol. 1996;57(5):779-786.
  • [41] Rajfur M, Kłos A, Wacławek M. Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water. Bioelectrochemistry. 2010;80:81-86. DOI: 10.1016/j.bioelechem.2010.03.005.[Crossref]
  • [42] Rajfur M, Kłos A, Wacławek M. Sorption of copper(II) ions in the biomass of alga Spirogyra sp. Bioelectrochemistry. 2012;87:65-70. DOI: 10.1016/j.bioelechem.2011.12.007.[Crossref]
  • [43] Maleva MG, Nekrasova GF, Bezel VS. The response of hydrophytes to environmental pollution with heavy metals. Russ J of Ecol. 2004;35(4):230-235. DOI: 10.1023/B:RUSE.0000033791.94837.[Crossref]
  • [44] Pajevic S, Vuckovic M, Stankovic Z, Krstic B, Kevresan Z, Radulovic S. The content of some macronutrients and heavy metals in aquatic macrophytes of three ecosystems connected to the Danube in Yugoslavia. Arch Hydrobiol Suppl. 2002;141(1-2):73-83.
  • [45] Stanković Ž, Pajević S, Vučković M, Stojanović S. Concentrations of trace metals in dominant aquatic plants of the Lake Provala (Vojvodina, Yugoslavia). Biologia Plantarum. 2000;43(4):583-585. DOI: 10.1023/A:1002806822988.[Crossref]
  • [46] Mazej Z, Germ M. Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere. 2009;74:642-647. DOI: 10.1016/j.chemosphere.2008.10.019.[Crossref]
  • [47] Kabziński AKM. Metale ciężkie. Cz. II. Emisja i wpływ metali na środowisko. Bioskop. 2007;3:5-10.
  • [48] González-Acevedo ZI, Olguín MT, Rodríguez-Martínez CE, Frías-Palos H. Sorption and desorption processes of selenium(VI) using non-living biomasses of aquatic weeds in horizontal flow. Water, Air, & Soil Pollut. 2012;223(7):4119-4128. DOI: 10.1007/s11270-012-1178-5.[Crossref]
  • [49] Fritioff Å, Kautsky L, Greger M. Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ Pollut. 2005;133:265-274. DOI: 10.1016/j.envpol.2004.05.036.[Crossref]
  • [50] Kabata-Pendias A, Pendias H. Geochemia pierwiastków śladowych. Warszawa: Wyd Nauk PWN; 1999.
  • [51] Formicki G. Metale ciężkie w środowisku wodnym: właściwości toksyczne, biologiczne, dostępność i kumulacja w tkankach zwierząt. Kraków: Wyd Nauk Uniwersytetu Pedagogicznego w Krakowie; 2010.
  • [52] Nyquist J, Greger M. Uptake of Zn, Cu, and Cd in metal loaded Elodea canadensis. Environ and Exper Botany. 2007;60:219-226. DOI: 10.1016/j.envexpbot.2006.10.009.[Crossref]
  • [53] Temel M. The effects of various concentrations of lead to chlorophyll a and chlorophyll b of Elodea canadensis Michx. BAÜ Fen Bil Enst Dergisi. 2005;7(2):12-18.
  • [54] Malec P, Maleva M, Prasad MNV, Strzałka K. Copper toxicity in leaves of Elodea canadensis Michx. Bull Environ Contam Toxicol. 2009;82:627-632. DOI: 10.1007/s00128-009-9650-7.[Crossref]
  • [55] Kähkönen MA, Kairesalo T. The effects of nickel on the nutrient fluxes and on the growth of Elodea canadensis. Chemosphere. 1998;37(8): 1521-1530. PII: 800456535(98)00147-7.
  • [56] Vecchia FD, La Rocca N, Moro I, De Faveri S, Rascio CAN. Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci. 2005;168:329-338. DOI: 10.1016/j.plantsci.2004.07.025.[Crossref]
  • [57] Mal TK, Adorjan P, Corbett AL. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis. Environ Pollut. 2002;120:307-311. PII: S0269-7491(02)00146-X.[Crossref]
  • [58] Sergio E, Cobianchi RS, Sorbo S, Conte B, Basile A. Ultrastructural alterations and HSP 70 induction in Elodea canadensis Michx. exposed to heavy metals. Caryologia. 2007;60(1-2):115-120.[Crossref]
  • [59] Harguinteguy CA, Schreiber R, Pignata ML. Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecol Indicat. 2013;27:8-16. DOI: 10.1016/j.ecolind.2012.11.018.[Crossref]
  • [60] Kłos A, Rajfur M, Wacławek M, Wacławek W, Wünschmann S, Markert B. Quantitative relations between different concentrations of micro- and macroelements in mosses and lichens: the region of Opole (Poland) as an environmental interface in between Eastern and Western Europe. Int J Environ Health. 2010;4(2/3):98-119. DOI:10.1504/IJENVH.2010.033702.[Crossref]
  • [61] Kłos A, Rajfur M, Šrámek I, Wacławek M. Use of lichen and moss in assessment of forest contamination with heavy metals in Praded and Glacensis Euroregions (Poland and Czech Republic). Water Air & Soil Pollut. 2011;222:367-376. DOI:10.1007/s11270-011-0830-9. [Crossref]
  • [62] Rajfur M, Kłos A, Waclawek M. Algae utilization in assessment of the large Turawa Lake (Poland) pollution with heavy metals. J Environ Sci and Health Part A. 2010;46: 1401-1408. DOI:10.1080/10934529.2011.606717.[Crossref]
  • [63] Komulainent SF, Morozov AK. Heavy metal dynamics in the periphyton in small rivers of Kola Peninsula. Water Res. 2010;37(6):874-878. DOI: 10.1134/S0097807810060138.[Crossref]
  • [64] Birungi Z, Masola B, Zaranyika MF, Naigaga I, Marshal B. Active biomonitoring of trace heavy metals fish using (Oreochromis niloticus) as bioindicator species. The case of Nakivubo wetland along Lake Victoria. Phys and Chem of the Earth. 2007;32(15-18):1350-1358. DOI: 10.1016/j.pce.2007.07.034.[Crossref]
  • [65] Tudor MI, Tudor M, David C, Teodorof L, Tudor D. Heavy metals concentrations in aquatic environment and living organisms in the Danube delta, Romania. Chemicals as Intent and Accid Global Environ Threats. 2006:435-442.
  • [66] Fawzy MA, El-sayed Badr N, El-Khatib A, Abo-El-Kassem A. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ Monit Assess. 2012;184:1753-1771. DOI: 10.1007/s10661-011-2076-9.[Crossref]
  • [67] Zimny H. Ekologiczna ocena stanu środowiska. Bioindykacja i biomonitoring. Warszawa: Agencja Reklamowo-Wydawnicza A. Grzegorczyk; 2006.
  • [68] Zhou G, Zhang J, Fu J, Shi J, Jiang G. Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta. 2008;606(2);135-150. DOI:10.1016/j.aca.2007.11.018.[Crossref]
  • [69] Wardencki W. Bioanalityka w ocenie zanieczyszczenia środowiska. Gdańsk: CEEAM; 2004.
  • [70] Jamnická G, Hrivnák R, Oťaheľová H, Skoršepa M, Valachovič M. Heavy metals content in aquatic plant species from some aquatic biotopes in Slovakia. Proc 36th Internat Conf of IAD. Wien: Austrian Committee Danube Research/IAD. 2006:336-370.
  • [71] Kähkönen MA, Pantsar-Kallio M, Manninen PKG. Analysing heavy metal concentrations in the different parts of Elodea canadensis and surface sediment with PCA in two boreal lakes in Southern Finland. Chemosphere. 1997;35(11):2645-2656. PII:S0045-6535(97)00337-8.[Crossref]
  • [72] Munteanu V, Munteanu G. Biomonitoring of mercury pollution: A case study from the Dniester River. Ecolog Indicat. 2007;7:489-496. DOI:10.1016/j.ecolind.2006.01.002.[Crossref]
  • [73] Thiébaut G, Gross Y, Gierlinski P, Boiché A. Accumulation of metals in Elodea canadensis and Elodea nuttallii: Implications for plant-macroinvertebrate interactions. Sci Total Environ. 2012;408(22):5499-5505. DOI: 10.1016/j.scitotenv.2010.07.026.[Crossref]
  • [74] Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, van den Dijssel C, Milne G, Clothier B. Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Experim Botany. 2006;58:206-215. DOI: 10.1016/j.envexpbot.2005.08.004.[Crossref]
  • [75] Samecka-Cymerman A, Kempers AJ. Biomonitoring of water pollution with Elodea canadensis. A case study of three small Polish rivers with different levels of pollution. Water, Air, & Soil Pollut. 2003;145(1-4):139-153.
  • [76] Samecka-Cymerman A, Kempers AJ. Bioaccumulation of heavy metals by aquatic macrophytes around Wrocław, Poland. Ecotoxicol and Environ Safety. 1996; 35(3):242-247.
  • [77] Samecka-Cymerman A, Kempers AJ. Heavy metals in aquatic macrophytes from two small rivers polluted by urban, agricultural and textile industry sewages SW Poland. Arch Environ Contam Toxicol. 2007;53:198-206. DOI: 10.1007/s00244-006-0059-6.[Crossref]
  • [78] Žáková Z, Kočková E. Biomonitoring and assessment of heavy metal contamination of streams and reservoirs in the Dyje/Thaya river basin, Czech Republic. Water Sci Technol. 1999;39(12):225-232.[Crossref]
  • [79] Pajeviã SP, Vuåkoviã MS, Kevrešan ŽS, Matavulj MN, Radulović SW, Radnović DV. Aquatic macrophytes as indicators of heavy metal pollution of water in DTD canal system. Proc for Natural Sci. 2003;104:51-60. UDC: 581.526.3:581.192]:556.53(497.113).
  • [80] Pajević S, Borišev M, Rončević S, Vukov D, Igić R. Heavy metal accumulation of Danube river aquatic plants - indication of chemical contamination. Cent Eur J Biol. 2008;3(3):285-294. DOI: 10.2478/s11535-008-0017-6.[Crossref]
  • [81] Muntyanu GG, Muntyanu VI. Biomonitoring of some heavy metals in the Dubossary (Dubasari) Reservoir. Hydrobiol J. 2006;42(2):87-101.
  • [82] Sawidis T, Chettri MK, Zachariadis GA, Stratis JA. Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Ecotoxicol Environ Saf. 1995;32(1):73-80.[Crossref]
  • [83] Demirezen D, Aksoy A. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere. 2004;56:685-696. DOI: 10.1016/j.chemosphere.2004.04.011. [Crossref]
  • [84] Tsao DT. Overview of phytotechnologies. Naperville Group Environ Manage J. 2003;78:7-14. DOI: 10.1007/3-540-45991-X_1.[Crossref]
  • [85] Buczkowski R, Kondzielski I, Szymański T. Metody remediacji gleb zanieczyszczonych metalami ciężkimi. Toruń: Wyd Uniwersytetu Mikołaja Kopernika; 2002.
  • [86] Marecik R, Króliczak P, Cyplik P. Fitoremediacja - alternatywa dla tradycyjnych metod oczyszczania środowiska. Biotechnologia. 2006;74:88-97.
  • [87] Rahman MA, Hasegawa H. Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere. 2011;83(5): 633-646. DOI: 10.1016/j.chemosphere.2011.02.045.[Crossref]
  • [88] Pilon-Smits E. Phytoremedation. Ann Rev Plant Biol. 2005;56:15-39.[Crossref]
  • [89] Parveen S, Arjun B. Bioaccumulation of chromium by aquatic macrophytes Hydrilla sp. & Chara sp. Pelagia Research Library. 2011;2(1):214-220.
  • [90] Chandra P, Kulshreshtha K. Chromium accumulation and toxicity in aquatic vascular plants. Botan Rev. 2004;70(3):313-327. DOI: 10.1663/0006-8101(2004)070[0313:CAATIA]2.0.CO;2.[Crossref]
  • [91] Basile A, Sorbo S, Conte B, Cobianchi RC, Trinchella F, Capasso C, Carginale V. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Internat J Phytoremediat. 2012;14(4):374-387. DOI: 10.1080/15226514.2011.620653.[Crossref]
  • [92] Axtell NR, Sternberg APK, Claussen K. Lead and nickel removal using Microspora and Lemna minor. Bioresour Technol. 2003;89(1):41-48. DOI: 10.1016/S0960-8524(03)00034-8.[Crossref]
  • [93] Hou W, Chen X, Song G, Wang Q, Chang CC. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol and Biochem. 2007;45(1):62-69. DOI: 10.1016/j.plaphy.2006.12.005.[Crossref]
  • [94] Mishra VK, Upadhyay AR, Pathak V, Tripathi BD. Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally occurring aquatic macrophytes. Water, Air, and Soil Pollut. 2008;192(1-4):303-314. DOI: 10.1007/s11270-008-9657-4.[Crossref]
  • [95] Dogan M, Saygideger SD, Colak U. Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull of Environ Contamin and Toxicol. 2009;83(2):249-254. DOI: 10.1007/s00128-009-9733-5.[Crossref]
  • [96] Mkandawire M, Taubert B, Dudel EG. Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Internat J of Phytoremediat. 2004;6(4):347-362. DOI: 10.1080/16226510490888884.[Crossref]
  • [97] Mkandawire M, Dudel EG. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci of The Total Environ. 2005;336(1-3):81-89. DOI: 10.1016/j.scitotenv.2004.06.002.[Crossref]
  • [98] Alvarado S, Guédez M, Lué-Merú AP, Nelson G, Alvaro A, Jesús AC, Gyula Z. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresour Technol. 2008;99(17):8436-8440. DOI: 10.1016/j.biortech.2008.02.051.[Crossref]
  • [99] Fritioff Å, Greger M. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere. 2006;63(2):220-227. DOI: 10.1016/j.chemosphere.2005.08.018.[Crossref]
  • [100] Demırezen D, Aksoy A. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere. 2004; 56(7):685-696. DOI: 10.1016/j.chemosphere.2004.04.011.[Crossref]
  • [101] Olguín EJ, Sánchez-Galván G. Heavy metal removal in phytofiltration and phytoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnol. 2012;30(1):3-8. DOI:10.1016/j.nbt.2012.05.020.[Crossref]
  • [102] Lezcano JM, González F, Ballester A, Blázquez ML, Muñoz JA, García-Balboa C. Sorption and desorption of Cd, Cu and Pb using biomass from an eutrophized habitat in monometallic and bimetallic systems. J Environ Manage. 2011;92: 2666-2674. DOI: 10.1016/j.jenvman.2011.06.004. [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_eces-2013-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.