PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 20 | 1 | 117-125
Tytuł artykułu

Fractionation of Selected Heavy Metals in Agricultural Soils / Frakcjonowanie Wybranych Metali Ciężkich W Glebach Uprawnych

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The content of trace elements in soils varies widely and their mobility and availability depends not only on the total content but also on the form of in which these elements occur. The aim of this study was to determine the total content of nickel, lead, zinc and copper in soils used for agriculture, and assess the mobility and phytoavailability of these metals against a background of physical and chemical properties of these soils. In samples taken from three soil profiles (Phaeozem and 2 Fluvisols) the contents of Ni, Pb, Zn and Cu were determined using atomic absorption spectroscopy in the solutions obtained according to the protocol of modified BCR sequential extraction procedure supplemented with aqua regia digestion. The total content of the analyzed metals in most cases corresponded to the natural values, often not exceeding the geochemical background level. It was only in the one profile of the Fluvisols (Endogleyic Fluvisol) that a higher concentration of zinc and lead was noticed (especially in the surface horizon), slightly exceeding the legal limit. Among the studied metals the lowest phytoavailability was characterized by copper (exchangeable forms on average 4.73% of the total), and the highest by zinc (11.49%). Nickel was the most permanently bound with soil solid phase, and its content in the residual fraction reached 84.46% of the total. Approximately a half of the total lead content was determined as a fraction bound with iron and manganese oxides, while in the case of this metal a significant role in binding of this metal was playing organic matter (fraction bound with organic matter and sulphides - an average of 27.5%). Significant role in the binding of all investigated metals was credited to iron and manganese compounds.
PL
Zawartość pierwiastków śladowych w glebach waha się w szerokich granicach, a ich mobilność i dostępność uzależniona jest nie tylko od całkowitej zawartości, lecz również od formy, w jakiej występują. Celem niniejszej pracy było poznanie zawartości całkowitej niklu, ołowiu, cynku i miedzi w glebach użytkowanych rolniczo oraz ocena mobilności i fitodostępności tych metali na tle właściwości fizykochemicznych tych gleb. W próbkach pobranych z 3 profili glebowych (czarna ziemia i 2 profile mad rzecznych) oznaczono zawartość Ni, Pb, Zn i Cu metodą atomowej spektroskopii absorpcyjnej w roztworach otrzymanych zgodnie z protokołem zmodyfikowanej procedury ekstrakcji sekwencyjnej BCR uzupełnionej roztwarzaniem w aqua regia. Zawartość całkowita badanych metali odpowiadała w większości przypadków wartościom naturalnym, często nie przekraczając poziomu tła geochemicznego. Tylko w przypadku jednej z badanych mad stwierdzono podwyższoną zawartość cynku i ołowiu, szczególnie w poziomie powierzchniowym, przekraczającą nieznacznie dopuszczalne normy. Najniższą fitodostępnością spośród badanych metali charakteryzowała się miedź (formy wymienne średnio na poziomie 4,73% zawartości całkowitej), a najwyższą cynk (11,49%). Najtrwalej z fazą stałą gleby związany był nikiel, którego zawartość we frakcji rezydualnej sięgała 84,46% zawartości całkowitej. Średnio połowa zawartości całkowitej ołowiu oznaczona została jako frakcja związana z tlenkami żelaza i manganu, jednocześnie w przypadku tego metalu znaczącą rolę w jego wiązaniu odgrywała materia organiczna (frakcja związana z materią organiczną i związkami siarki - średnio 27,5%). Wyraźnie znaczącą rolę w wiązaniu wszystkich badanych metali odgrywały związki żelaza i manganu.
Wydawca

Rocznik
Tom
20
Numer
1
Strony
117-125
Opis fizyczny
Daty
wydano
2013-03-01
online
2013-02-23
Twórcy
  • Department of Soil Science and Soil Protection, University of Technology and Life Sciences in Bydgoszcz, ul. Bernardyńska 6, 85-029 Bydgoszcz, Poland, phone +48 52 374 95 26, szymi@utp.edu.pl
Bibliografia
  • [1] Hall GEM, Gauthier G, Pelchat JC, Pelchat P, Vaive JE. Application of a sequential extraction scheme to ten geological certified reference materials for the determination of 20 elements. J Anal At Spectrom. 1996;11:787-796. DOI: 10.1039/JA9961100787.[2] Miller WP, Martens DC, Zelazny LW. Effect of sequence in extraction of trace metals from soils. Soil Sci Soc J of America. 1986;50:598-601. DOI: 10.2136/sssaj1986.03615995005000030011x.[Crossref]
  • [3] Rauret GJF, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller Ph. Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit. 1999;1:57-61. DOI: 10.1039/A807854H.[Crossref]
  • [4] Sutherland RA, Tack FMG. Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Adv Environ Res. 2003;8:37-50. DOI: 10.1016/S1093-0191(02)00144-2.[Crossref]
  • [5] Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51(7):844-850. DOI: 10.1021/ac50043a017.[Crossref]
  • [6] IUSS Working Group WRB. World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103. FAO, Rome; 2007.
  • [7] Standard ISO 11466: Soil quality - Extraction of trace elements soluble in aqua regia. Geneva: International Organization for Standardization; 1995.
  • [8] Soil Survey Division Staff. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. Honolulu: University Press of the Pacific; 2002.
  • [9] Różański S. Skład granulometryczny różnych typów gleb w aspekcie ich genezy oraz zmian w klasyfikacji uziarnienia. Rocz Glebozn. 2010;61(3):100-110 (in Polish).
  • [10] Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Sci Total Environ. 2009;407:3972-3985. DOI: 10.1016/j.scitotenv.2008.07.025.[WoS][Crossref]
  • [11] Maliszewska-Kordybach B, Smreczak B, Klimkowicz-Pawlas A. Effects of anthropopressure and soil properties on the accumulation of polycyclic aromatic hydrocarbons in the upper layer of soils in selected regions of Poland. Appl Geochem. 2009;24:1918-1926. DOI: 10.1016/j.apgeochem.2009.07.005.[WoS][Crossref]
  • [12] Lipiec J, Walczak R, Witkowska-Walczak B, Nosalewicz A, Słowińska-Jurkiewicz A, Sławiński C.
  • The effect of aggregate size on water retention and pore structure of two silt loam soils of different genesis.
  • Soil Tillage Res. 2007;97:239-246. DOI: 10.1016/j.still.2007.10.001.[Crossref]
  • [13] Kobierski M, Dąbkowska-Naskręt H. Skład mineralogiczny i wybrane właściwości fizykochemiczne zróżnicowanych typologicznie gleb Równiny Inowrocławskiej. Cz. I. Morfologia oraz właściwości fizyczne i chemiczne wybranych gleb. Rocz Glebozn. 2003;54(4):17-27 (in Polish).
  • [14] Jeske A, Gworek B. Chromium, nickel and vanadium mobility in soils derived from fluvioglacial sands.
  • J Haz Mat. 2012;237-238:315-322. DOI: 10.1016/j.jhazmat.2012.08.048.[Crossref]
  • [15] Kierczak J, Neel C, Aleksander-Kwaterczak U, Helios-Rybicka E, Bril H, Puziewicz J. Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: A combined approach.
  • Chemosphere. 2008;73:776-784. DOI: 10.1016/j.chemosphere.2008.06.015.[Crossref]
  • [16] Overesch M, Rinklebe J, Broll G, Neue HU. Metals and arsenic in soils and corresponding vegetation at Central Elbe river floodplains (Germany). Environ Pollut. 2007;145:800-812. DOI: 10.1016/j.envpol.2006.05.016.[WoS][Crossref]
  • [17] Vijver MG, Spijker J, Vink JPM, Posthuma L. Determining metal origins and availability in fluvial deposits by analysis of geochemical baselines and solid-solution partitioning measurements and modeling. Environ Pollut. 2008;156:832-839. DOI:10.1016/j.envpol.2008.05.028.[Crossref][WoS]
  • [18] Schwertmann U. Some properties of soil and synthetic iron oxides. In: Stucki JW, Goodman BA, Schwertmann U, editors. Iron in Soil and Clay Minerals. NATO ASI Series, Math Phys Sci. 1988;217:203-250.
  • [19] Waychunas GA, Kim CS, Banfield JF. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res. 2005;7:409-433. DOI: 10.1007/s11051-005-6931-x.[Crossref]
  • [20] Micó C, Peris M, Recatalá L, Sánchez J. Baseline values for heavy metals in agricultural soils in an European Mediterranean region. Sci Total Environ. 2007;378:13-17.[WoS]
  • [21] Czarnowska K. Ogólna zawartość metali ciężkich w skałach macierzystych jako tło geochemiczne gleb.
  • Rocz Glebozn. 1996;47:43-50 (in Polish).
  • [22] Rozporządzenie Ministra Środowiska w sprawie standardów jakości gleby oraz standardów jakości ziemi z dnia 9 września 2002 r. DzU Nr 165, poz. 1359 (in Polish).
  • [23] Fernández E, Jiméneza R, Lallenab AM, Aguilara J. Evaluation of the BCR sequential extraction procedure applied for two unpolluted Spanish soils. Environ Pollut. 2004;131:355-364. DOI: 10.1016/j.envpol.2004.03.013.[24] Žemberyová M, Barteková J, Hagarová I. The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins.[Crossref]
  • Talanta. 2006;70:973-978. DOI: 10.1016/j.talanta.2006.05.057.[Crossref]
  • [25] Bacon JR, Hewitt IJ, Cooper P. Reproducibility of the BCR sequential extraction procedure in a long-term study of the association of heavy metals with soil components in an upland catchment in Scotland. Sci Total Environ. 2005;337:191-205. DOI: 10.1016/j.scitotenv.2004.06.010.[Crossref]
  • [26] Lindsay W, Norvell W. Development of a DTPA soil test for zinc, iron, manganese, copper. Soil Sci Soc Amer J. 1978;42:421-428. DOI: 10.2136/sssaj1978.03615995004200030009x.[Crossref]
  • [27] Alvarez JM, Lopez-Valdivia LM, Novillo J, Obrador A, Rico MI. Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils.
  • Geoderma. 2006;132:450-463. DOI: 10.1016/j.geoderma.2005.06.009.[Crossref]
  • [28] Dąbkowska-Naskręt H, Jaworska H, Kobierski M. Zawartość form całkowitych i dostępnych dla roślin mikroelementów w wybranych podtypach czarnych ziem kujawskich. Zesz Probl Post Nauk Roln. 2000;471:237-243 (in Polish).
  • [29] Tokalioğlu Ş, Kartal Ş, Birol G. Application of a three-stage sequential extraction procedure for the determination of extractable metal contents in highway soils. Turk J Chem. 2003;27:333-346.
  • [30] Mossop KF, Davidson CM. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Anal Chim Acta. 2003;478:111-118.
  • [31] Schramel O, Michalke B, Kettrup A. Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures. Sci Total Environ. 2000;263:11-22.
  • [32] Kabata-Pendias A. Trace Elements in Soil and Plants. Third Edition. Boca Raton: CRC Press; 2001.
  • [33] McBride M. Forms and distribution of copper in solid and solution phases of soils. In: Copper in Soils and Plants. Loneregan J. editor. Sydney: Academic Press; 1981.
  • [34] Kucharzewski A, Debowski M. Stan zakwaszenia i potrzeby wapnowania gleb w Polsce. Zesz Probl Post Nauk Roln. 2000;471:627-635 (in Polish).
  • [35] Davidson CM, Ferreira PCS, Ure AM. Some sources of variability in application of the three-stage sequential extraction procedure recommended by BCR to industrially-contaminated soil. Fresenius J Anal Chem. 1999;363:446-451.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_eces-2013-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.